ORBITAL ANGULAR MOMENTUM

-«-), the Nth set corresponding to values of
n1 and n, such that their sum has the fixed value
N. Thus the Nth set of equations is, explicitly,

{5+ (Nms) Tls+1 Nms—1 na|ls')
~Ls(N—s+DPs—1 N—5-+1 n3]l")
:Z3/<S N—s 713[[3/>, (S:O,l,' . .N)

Inspection reveals at once that the eigenvalues
of I; are those of the matrices 4V (N=0,1,2,
-+ -), the elements of which are

A0 =i () (V=) P
_.[S(N-j‘“}—l)]%ﬂs,h’»l}‘

Now if J is a general angular momentum, one
has the following well-known results (e.g.,
reference 5, pp. 339-345): (i) The eigenvalues of
J: {and therefore of J, and J,) are half-integral,
re, J/ =0, &% +1, --); (ii) in the J2, J.-
diagonal representation (in which J,+4J, acts
as a raising operator) the representative of J,
is a diagonal block matrix such that if its j,
j element (corresponding to J¥ =j(j+1), j=0,
% 1, -++) be denoted by J,9, then J,@ is a

(3.1)

(3.2)
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{2741)-dimensional matrix whose elements are
(4 v = FU LG Am) (G—m'+1) PBor ey
—LG=m}(GHm' + 1) 8w i} (3.3)

Here m/, m'" run by integral steps from j to
— j. The relabelling defined by

m'=j—t, m’'=j—s (54=01,---27)

changes (3.3) into

(JyD)or=—50{Ls+1) (27— ) J%s 1
—[s(27—s+1) 14,001}

Comparison of (3.2) with (3.4) now shows that

AWM= g7, am, (3.5)

(3.4)

However, as already remarked, the eigenvalues
of J,@ are half-integral, so that those of 4 (¥ are
integral. Thus all the eigenvalues of I3 are
integral (including zero), which was to be shown.
Moreover, the general theory of angular momen-
tum then leads to the conclusion that the total
orbital angular momentum quantum number ]
raust also be integral.
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This paper calls attention to the contemporary need for an elementary discussion of the non-
linear features of the equations of hydrodynamics and their application to supersonic and high
pressure phenomena. A simplified account of the method of characteristics is presented, with
illustrations from the theory of the ideal fluid, the thermally conducting fluid, and the viscous
fluid. An “‘asymptotic paradox’ is briefly discussed.

INTRODUCTION

UITE frequently the fluid mechanics prob-

lems, encountered by physicists in research
and development activities, involve flow veloci-
ties and compressions, such that the linear ap-
proximations to the flow equations cannot be
usefully employed. The solution of even the
simplest of fluid flow problems then becomes a
problemi in  nonlinear partial differential
equations.
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young physicist starting research in such fields
must often familiarize himself with the funda-
mentals by independent study, because the
subject of fluid mechanics is not generally part
of a physics curriculum. This paper is primarily
intended as an aid to such a person, particularly
with reference to the work by Courant and Fried-
richs,! and the more recently published work by
von Mises.? Unfortunately, the treatment and
notation of the first reference are such as to be
intelligible only to mathematical physicists of
considerable maturity and sophistication. How-
ever, the second reference develops the concepts
of the characteristics of nonlinear differential
equations in a manner that is both intuitively
more transparent and mathematically more gen-
eral than previous disucssions. The von Mises
text is, of course, written at an advanced level,
and the present authors believe that its approach
is so clear and so important that it is worthwhile
to attempt a somewhat simplified version suitable
for self-study by graduate students in physics.
This paper is a step in this direction. It will be
assumed that the reader is familiar with the ele-
mentary discussions such as those usually in-
cluded in a physics degree program,®® in particu-
lar the Cauchy problem, and with the concepts of
vector analysis as presented in standard courses
on mechanics or theoretical physics.” The von
Mises device of using a vector notation in the
x—¢ plane is an excellent and convenient short-
hand way of writing the partial differential equa-
tions that is independent of the coordinate
system used, and that readily lends itself to the
discussion of characteristics.

In particular the authors feel that writing the
gradient operator as the vector sum of a normal
and a tangential derivative along the curve of
initial data [Eq. (15)7 helps clarify the meaning
of the characteristics. From this approach, the
linear combination of equations to form a direc-
tional derivative in the characteristic direction,
somewhat arbitrarily introduced by Courant
and Friedrichs in their Section 22, appears quite

5 A. Sommerfeld, Partial Differential Equotions (Aca-
demic Press, Inc., New York, 1949).

6 D. Greenspan, Introduction to Partial Differential
Equations (McGraw-Hill Book Company, Inc., New York,
19?1\7)‘/'. Band, Iniroduction to Mathematical Physics (D.

Van Nostrand Company, Inc., Princeton, New Jersey,
1959).
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naturally as von Mises’ compatability relations.
The Riemann invariants, to be used along the
characteristic curves to solve the flow problem,
are then obtained from the compatability
relations.

As an illustration of the power of the von Mises
approach, the more general case of a heat-
conducting fluid is discussed. The equations
governing this case are second order, and conse-
quently the vector notation must be extended to
a tensor or dyadic notation. In this notation
the distinction between the nature of the flow
of a fluid with exceedingly small thermal conduc-
tivity and that of an ideal fluid with zero thermal
conductivity is immediately apparent.

It is also hoped that this paper may help
stimulate teachers responsible for the planning
of graduate programs in physics to include more
reading assignments in nonlinear mechanics and
the theory of characteristics.

EQUATIONS OF COMPRESSIBLE FLUID FLOW

We shall first consider only the simplest pos-
sible model, a compressible thermodynamically
reversible (nonviscous, nonthermally conducting,
etc.,) ideal fluid, and at first also restrict the
discussion to motion in only one direction, taken
as the x axis. Let the density and pressure of the
fluid be p and p, the ‘“‘particle velocity” v, at
position x and time f. The equations governing
the motion of the fluid are then the equation of
mass conservation

dp/ 8+ (pv)/ 82 =0, €y
and momentum change
0(0v/dt+v0v/0x) +0p/dx=0. (2)

An equation expressing the pressure as a function
of the density must also be supplied to specify the
material properties of the fluid—the specifying
equation

F(p,p)=0. 3)
Given the specifying equation we can determine
¢ =dp/dp, &)

where ¢ is the velocity of propagation of small
amplitude sound waves. We use this to rewrite
the second equation of motion in terms of p and
v, and then set out the two equations of motion
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in the following pattern:
dp/ dt+vdp/ dac+0+pdv/ dx =0,
0-+4-c?p/ dx+pdv/ dt+pvdo/dx=0.

(5a)
(Sb)

This pair of equations can then be written in a
vector notation

2 as-Du,=0, 4,k=0,1. (6)
k

Here the vector operator D is the pair of differen-
tials (8/6¢,8/dx), while #o=p, u;=v; and if the
subscript ¢=0 refers to the first of Eqgs. (5), and
1=1 to the second, then the vectors a; are:
A= (0762) '

an=(p,pv). (7)

agp=(1,9); an=(0,);

The equations of motion in three dimensions

are
dp/di+v-gradp+p divv=0

;o ®
¢t gradp+pov/dt+pv-gradv=0

and these four equations can be written in exactly
the same form as {6) if we take 7, k ranging from
0 to 3, and the notation

D=(9/3t,0/0x,0/9y,8/3z), 9)
Uo=p, U1=Us, U=V, #43=0,, and the sixteen

vectors

~

Agp = (1,ui,u2,u3) ;o Qo= (O,p,0,0) H
aex= (0,0,0,0); a¢=(0,0,0,p),
aw=(0,c40,0); as= {p,pu1,ptta,p3);
ap=a;3=90,
az0=1{0,0,c2,0); a,; =2,3=0: (10)
Byg = (P;Pul,P%mP%a),
azo= (0,0,0,62) N 831:a32=0;
a3y = (P,Puz,puzypua)-

In general, we are going to study systems of
differential equations having the form

> ag-Dup=b; 4,k=0,1,.--., N, (11)
%

where each vector a is a function of all the vari-
ables uy, and the quantities b are also functions
of the variables #;. The number of components
in the wvectors is equal to the number of inde-
pendent variables in the problem, e.g., four in
Eq. (8), and need not be equal to N, which is
the number of dependent variables in the
problem.
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CHARACTERISTICS WITH TWO INDEPENDENT
VARIABLES

We return now to the simple problem presented
by Eq. (6), slightly generalized to read

> ap-Dup=b; 14, k=01, (12)
k

where each component of the four vectors a;
and both the quantities b; are given explicit
functions of p and v, (i.e., of u¢and ;). From the
physics of the situation we would expect that a
unique solution, giving p and v as functions of x
at all times {, exists if the “initial values™ of p
and » are given at =0 for all positions x; more
generally, if p and v are given at all points on
some specified “initial curve” in the x—¢ plane,
then p and v are uniquely determined throughout
the x —¢ plane. [t turns out, however, that not all
“initial curves” will give such predictive informa-
tion, and for a very clear physical reason to be
explained later. These exceptional initial curves
are the “‘characteristics’ of the set of differential
equations.

The general method of solving equations of the
type (11) and (12) that we are going to study
involves first locating the characteristic curves.

Let an arbitrary initial curve C in the x—!
plane be specified parametrically by expressing
tand %, or %o and x; as functions of a parameter o.

DC()—-"—.’)C[)(O'), x1=x1(¢r), (13)

and let the values of the dependent variables
prescribed along the curve C also be expressed in
terms of the same parameter on C:

(14)

R AENGENC!

Let © be a unit vector tangent to C at some point,
and & be a unit vector normal to C at the same
point, in the x—:¢ plane. The vectors + and 2
form a basis, and the vector operator D can be
written in the form

D=10/d5+2%9,/0n, (15)

where /90 is a directional derivative tangential,
and 9/9n a directional derivative normal to the
curve C. The set of equations (12) can now be
written in the form B

> ane (cauk/écr-{“lauk/an) =b;. (16)
k
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Now, by hypothesis, both the functions u;
are known all along C, so if we know Du,; all
along C, we can construct the values of #; in the
neighborhood of C. Knowledge of u; along C at
once vyields dui/ds, but we still need du,/dn to
complete the solution. We can rewrite (16) as

Z (aﬂ,l) auk/8n=bz~z (am:)auk/ac (17)

All quantities on the right, and all the coefficients
{ax-2) on the left are known along €, and so
Eq. (17) can be regarded as a pair of equations
for the two derivatives du,/d# at every point on
C. The solution of this pair of equations, if one
exists, will provide the information needed to
construct u; along any curve lying near to C.
Repeating the process indefinitely will yield the
complete solution to our problem.

The condition that a solution of Egs. (17) does
exist is that the determinant of the coeff-
cients on the left side shall not vanish. But we
are interested in curves C for which solutions of
Eq. (17) do not exist, and this occurs if the
determinant of the coefficients does vanish

Qoo N Ao
00 01 ’=0. (18)

apd anH

The unit vector % determined by this equation
as a function of position in the x—# plane is
everywhere normal to the curve C which is a
characteristic of the equations of motion, Data
along such a curve cannot be used to derive a
solution of the equations. Equation (18) gives
2 asa field in the x — ¢ plane, and this field enables
us to construct the entire family of character-
istics. Since there are, in general, two roots of
Eq. (18), there are two families of characteristics.
If we write

A= (7\0,7\1), (19)

and use Eq. (7) in Eq. (18), we find the two roots
to be

7\0/)\12 == (20)

The slopes of the two characteristic curves,
normal to the vector 2, are therefore given by

—(c—v). (21)

These are “‘signal velocities” in the fluid, and it
is for this reason, physically, that such charac-

71/To=c-Fv or
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teristics cannot be used for predictive purposes.
In the first place, if one could set up an arbitrary
set of values of p and v on such a line, the informa-
tion so presented would propagate with the signal
velocity and so remain on the line; and in the
second place, since information travels along the
line, it is in fact not possible to set up an arbitrary
choice of p and v on the line: one’s choice at a
point 4 will alteady determine what one must
choose at a neighboring point. There exist in
fact “compatibility” relations on each charac-
teristic. We proceed to derive these.

THE COMPATIBILITY RELATIONS

When 2 is normal to a characteristic curve C,
the vanishing of the determinant Eq. (18) means
algebraically that the two quantities on the left
of Eq. (17), namely > (aops-%)0us/dn and
>k (@A) 0ur/dn, are not independent—there
exists a linear combination that vanishes. In
other words, there exists a pair of coefficients «;
such that

2052 (@ N)Ouy/ dn=0, (22)
ik
while Eq. (17) then implies that
B= Zaibi= Za’; (aik : T) 6%};/(90’. (23)

Now since the values of u; on the characteristic
do not determine du/dn, the normal derivative
remains arbitrary across the characteristic, and
therefore Eq. (22) can be true only if

> aa.-2=0 foreach k. (24)

In other words, the vectors

Ak= Z ok k=0, 1 (25)

are both tangential to the characteristic curve C.
Therefore,
A}c =4 l A,c [ 3

and Eq. (23) becomes
& k

(26)

As [Ag| and B are known at all points in the
plane, this equation is a restriction on the tan-
gential derivatives of the u’s along the charac-
teristics—it is a compatibility relation.
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For each root % of Eq. (18), i.e., for each
characteristic direction, there is a set of coef-
ficients o; satisfying Eq. (24). There is thus a
pair of vectors Ay, for each characteristic, and so
a compatibility relation along each characteristic
direction. We shall proceed to find these com-
patibility relations for the characteristics found
in Eq. (21).

First, we write out Eq. (24) in detail, using
(7) for ay and (20) for 2.

as(1,9) - (—v=¢, 1)
+a1(0,62) - (—vc, 1)Ae=0
a0(0,0) - (—v=¢, 1A '
Far(p,pv) - (—vc, DAo=0

(28)

Both equations naturally vield the same answer :

O[()/Oq: :F'C, (29)

the absclute magnitude of either factor being
immaterial.

For the so-called “plus characteristics” given
by 71/re=c+vand ho/Ay = —v—¢, the multipliers
are ao/a;=-+¢, and we may take ap=c¢, a;=1.
From Eq. (25) we now have

Ao=c(1,u)+(0,c%) =c(1, c+2)
Ar=c(0,p)+ (o) =p (1, c+o) )’
and the compatibility relation (27) reduces to

c(1, c+v)-(8/9¢,8/9x)p
+p{1, c+9)- (8/0t,8/dx)v=0,

(30)

or
(c/p[8/at+ (c+v)d/ox]p
+[8/8t+ (c+v)a/oxJp=0. (31)
This has exactly the first form on the left of
Eq. (27) with
8/8c=28/9t+ (c+v)d/dx, (32)

which is the directional derivative along the
characteristic, with ¢ being the signalling time on
the characteristic. Finally, if we define the new
variable L(p) by

p
L{p) =f c(p")d Inp’,

Py

(33)
and note that
L/ dt= (c/p)ap/dt,

AL/ dx=(c/p)dp/0x, (34)
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the compatibility relation (31) reduces simply to
(8/080) (w+L)=0. (35)

Thus the compatibility relation asserts simply
that the function v+Z is a constant along the
characteristic; the function v+L is known as the
Riemann invariant for the characteristic.

For the other family of characteristics, given
by 71/10= —c¢-+v, wefind in a similar fashion that

(8/9a)(v—L)=0. (36)

It is conventional to use the symbol ¢, for
the signalling time on the plus-characteristic,
and o_ for the same parameter on the minus-
characteristic; the two compatibility relations
are then written as

(8/804) (v+L) =0,

where

(8/80_) (w—L)=0, (37)

il
L@=/cwmm¢
20

Note that the characteristic directions are not
just properties of the fluid, but are properties of
the motion of the fluid, and depend on the initial
conditions prescribed by the problem. Starting
from the initial conditions one can build up the
solution and the characteristics in a step-by-step
process described in the next section.

INTEGRATION OF THE EQUATIONS
OF MOTION

Let p and » be prescribed on a curve PQ in
the x—¢ plane, that is nowhere tangent to a
characteristic direction; since we really do not
know the characteristic directions before the
prescription is set up, we must be sure that the
prescription of p and v on PQ does not happen
to force the characteristics to be tangent to PQ
at any point. Knowing p and v is equivalent to
knowing ¢ and v at all points on PQ, and therefore
knowing the slopes of the characteristics Eq. (21)
as they cross PQ. Choose any two points 4, B
on PQ close enough together that pp—pa<lpa,
and draw straight lines AC and BC in the direc-
tions of the plus- and minus-characteristics,
respectively, intersecting at C. From the data on
P£Q we know p, and therefore L(p) at both 4
and B, and we may write the compatibility
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X

F1G. 1. The domain of dependence for data prescribed
along a space-like curve PQ.

relations on the characteristics from 4 and B
vo+Lo=v4+Ly4,
which vield

ve=5%(La—Ly+v4-+uz)
Le=%(La+Lptvi—v5).

Thus the data at 4 and B vyield data at C. By
choosing a sequence of pairs of points 4, B
sufficiently closely spaced on PQ we can build up
the solution on a locus of C on one side of PQ,
and by repeating the process we can construct
the solution for p and v throughout the region
PQOR where PR is a plus-characteristic and QR a
minus-characteristic. A similar process builds up
the solution on the other side of PQ by inter-
changing the plus- and minus-characteristics.
See Figs. 1 and 2. This method of solution is
particularly well adapted to numerical integra-
tion of the equations of motion, and to program-
ming on a digital computer.

The region PQR defined above is called the
domain of dependence; to learn anything about

L¢—ve=Lg—us,

(38)
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t

x

F16. 2. The domain of dependence for data prescribed
along a time-like curve PQ.

the solution outside this domain requires addi-
tional initial information. Thus we cannot predict
the flow at .S because that point can be influenced
both by signals from before P and after Q about
which initial data are lacking.

MOTION OF FLUID WITH THERMAL
CONDUCTIVITY

To illustrate more generalized applications of
the method of characteristics, we now consider
very briefly the problem of a compressible fluid
with thermal conductivity but with no viscosity.
The equations of motion must now be supple-
mented by the equation of conservation of heat:

0S/0i+v3S/0x = (K/Tp)8*T/dx2,  (39)

where S is the entropy per unit mass, and T
the absolute temperature. We now need two
specifying equations; for example, to specify a
gas we need both the equation of state and the
heat capacity. Here we shall take S and p as the
thermodynamic variables, and specify 1" and p
as given functions of S and p: this means that the
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partial derivatives with respect to .S and p, viz.
Ts, T,, ps, and p, are also given functions of p
and S. Therefore we have

ap/dx=psdS/dx+p,00/ 0%, (40)
to be used in Eq. (2) and
9T/ dx2= Tsd2S/ dx2+ T,0%/ dx
+T55(8S/0x)2+2T5,(8S/3x) (9p/ 0x)
+7T,,(3p/9x)%,  (41)

to rewrite Eq. (39). Using a notation like that in
Eq. (11) the three equations (1), (2), and (39)
can be written in the form -

2 ag - Dup=0,
k
2 ag-Dup=0, (42)
k
Z Ak:DDuk=B,
&

where w#i=p, u;=9, uy=.S are the dependent
variables, B is a term containing no second-order
derivatives of the dependent variables, a; are
the following vectors:

aj = (1,7)) 3
an= (07179) 5

and A, are the following dvadics:

0 0 0 0O
0 T, 0 T

Because there are second-order derivatives
involved in Egs. (42), the boundary value prob-
lem is not as simple as before. We must now
know not only the dependent variables along the
“initial curve,” but we must also know their
first derivatives across the curve. We may again
use the notation of Eq. (15), and write Eqgs. (42)
in the form

313:0; (4:3)

Agz = (071)3)!

ai=(0,0);

asn= (p,pv);

Z alk'lauk/an=b1, Z agk'lauk/an=bz,
k k

and , (45)

3= Ak A0/ dn?=B;,
%

where by and b, involve only derivatives in the
= direction, and B; involves no second-order
derivatives in the % direction. The characteristic
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curves are now defined as those along which the
initial data cannot be used to determine the sec-
ond-order derivatives in the direction ) normal
to the curve. To make the set of equations all
second order, we operate on the first two with
3/om:

Z alk-lGQuk/énQ :Bl, Z azk-&a%k/an?:Bz,
k k

S Ay a0%u/ dnt = By, (46)
k

where none of the B’s contain any second-order
derivative in the X direction. We now have three
simultaneous equations for the three second
derivatives 9%;/dn?, when we are given the
dependent variables and their first derivatives
on some initial curve tangent to . They have %o
solution if A is a root of the determinant equation

ap-a dpd aw'?»{
Ag1- A Ag9° M 323'3\. i ={). (47)
A]_I:\Q& Az::}\,?\, Agi?\.?\.l

Using Eq. (43) and (44), this is simply

Ihood, oM 0 |
DAt pAotpvhy Pghy =0, (48)
T N2 0 T\

which yields for the normal to the characteristics:

MP=0, No/M=—v(P,—psT,/Tg)t=—vEtcr,

where ¢y is the isothermal limit of the sound
speed. The directional derivative along the
characteristic is thus 8/df+ (v£cr)d/dx=08/90,
and in each case the ¢ parameter is the signalling
time with a propagating speed equal to the high-
frequency limit (isothermal) sound speed. Since
the characteristic corresponds to a discontin-
uous second derivative, it is physically natural
that its propagation speed should be the high-
frequency limit.

Actually to construct a solution to this flow
problem, one must discuss in detail the compati-
bility relations

> aB;=0,

H

(49)

where «; are solutions of the equation

oy hetonfo - A tasArAd =0, (50)
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analogous to Eq. (24): viz.,

(M1=Ao/)1+‘21, (51)

There is one set for each characteristic direction.
While the B's are somewhat cumbersome expres-
sions, and it would not serve the purpose of this
article to develop the algebraic details, it should
now be clear that the flow problem can in princi-
ple be solved.

Here we would point out that there appears to
be a basic distinction between the fluid without
thermal conductivity, and the fluid with a small
thermal conductivity that may approach zero.
In the first idealized case the characteristics are
lines in the x —¢ plane across which the flow speed
and the density may be discontinuous. But such
characteristics do not exist in the thermal con-
ducting fluid, where the characteristics are de-
fined rather as lines across which discontinuities
in only the first derivatives of the flow speed and
density may exist. Another way of looking at this
is to realize that the characteristics in the con-
ducting fluid are obtained by the 3X3 determi-
nant of Eq. (47), while for the nonconducting
fluid they are found from the 2 X2 determinant
of Eq. (18). Allowing the conductivity to ap-
proach zero cannot convert a 3X3 gradually
into a 2X2 determinant!

It is not even certain that the signal speeds on
the characteristics become identical in the limit
of zero conductivity; all we do know is that the
frequency, beyond which the sound wave speed
becomes isothermal, increases with decreasing
conductivity. There is indeed a real qualitative
difference between the characteristics of the very
poor conductor and the truly nonconducting
fluid.

This kind of difference is even more marked
when we consider viscous fluids, and allow the

as=ps/Tshs

&y = *‘1,
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viscosity g to approach zero. Viscosity adds a
dissipation term to the heat equation, which
simply modifies the term B on the right side of
Eq. (42). The viscous term in the equation of
momentum change is proportional to the second
derivative of the speed, and Eq. (2) therefore
becomes itsell second order in the derivatives of
the dependent variables. The terms appearing
on the left of the second equation in Eq. (42)
then are all transferred to the right side of the
equation. The analog of Eq. (48) now turns out
to be

NoFoA1 pAg 0
0 7])\12 0 = 07
T2 0 T2

and the characteristics are given by Ag+ovA;=0,
ie., 71/To=v; or \;=0. The only paths in a
viscous fluid across which the density gradient
can be discontinuous are thus the particle his-
tories ; the signal speeds are the particle velocities.
Even if the viscosity were to gradually approach
zero, there is no way in which these particle
paths could gradually approach the characteris-
tics of the nonviscous fluid. These are examples
of “asymptotic paradoxes’—well-known in
hydrodynamics.®

The theory of characteristics in an ideal fluid
neglecting both thermal conductivity and vis-
cosity has been extensively applied to flows of
real fluids, but the validity of the neglect has
usually been assumed rather than critically
examined. We conclude this paper with the
unanswered question: How much meaning can
be ascribed to the characteristics of an ideal non-
conducting nonviscous flow, when applied to the
flow of a real fluid with small viscosity and small
thermal conductivity?

8 G. Birkhoff, Hydrodynamics (Dover Publications, Inc.,
New York, 1950).



