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A single Hugoniot curve determined from shock-wave experiments does not provide enough
thermodynamic information to specify an equation of state. The assumptions which, along
with shock-wave data, are sufficient to determine a complete equation of state are instructive
to a serious student of thermodynamics, because they illustrate the significance of the state
variables and the relations among them. This paper considers the specific problem of calculating
the state variables of shock-induced states and discusses calculations based on the assumption
of either constant C, or constant C, from a structural point of view. Methods of calculating
the state variables are formulated to show how the assumptions make them possible. The
assumption of constant C, specifies implicitly the functional forms of the (E-p-v) and (p-v-T)
equations of state. Similarly, the assumption of constant C, specifies the functional forms of
the (H-p-v) and (p-v-T') equations of state. The experimental Hugoniot curve is used as a
boundary condition to determine arbitrary functions in these equations of state and to show
how the assumptions and the experimental data lead to a complete thermodynamic descrip-

tion of shock-induced states.

INTRODUCTION

O determine equations of state from shock-
wave experiments it is necessary to assume

that shocked states lie on equilibrium, thermo-
dynamic surfaces, which are defined by equations
of state and which satisfly the thermodynamic
identities of Gibbs.! This assumption is valid if
thermodynamic equilibrium is established be-
hind the shock front. In this case, the shock con-
nects equilibrium states, but the entropy of the
shocked state is greater than the entropy of the
initial state because the shock process is both
adiabatic and irreversible. Also, conditions
reached in a shocked state can be attained from
the initial state by reversible, nonadiabatic proc-
esses, for example, reversible, static, isothermal,
compression, followed by reversible addition of
heat. To test the validity of the assumption of
equilibrium behind the shock, it is necessary to
compare equations of state determined from
shock-wave experiments with those obtained
from static experiments. Although there are not
enough data to make a conclusive comparison,
it is significant that the 27°C isotherms of Al,
Cu, and Zn, calculated by Walsh and Christian?
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from shock-wave data, when extrapolated below
100 kbar, are in some agreement with those de-
termined by Bridgman?®~® in static experiments.

Applying the laws of conservation of mass,
momentum, and energy to a steady-state shock
moving in stationary material yields the Ran-
kine~Hugoniot jump conditions across the shock
front®:

Mass poU=p(U—u), (1a)
Momentum p—po=poUu, (1b)
Energy pu=pU(E—Eo+3u?), (lc)

where U is the shock velocity, #, #, p=1/9, and
E are the particle velocity, the pressure, the
density, the specific volume, and the specific
internal energy of material behind the shock
front, and po, po=1/70, Eu, are the values of these
quantities ahead of the shock front.

The elimination of U and # from Eq. (1lc)
gives the Hugoniot equation

E—E¢=%(p+po) (ve—7), (2

that defines all states on the (E-p-v) surface that
can be reached from an initial condition (Fg,po,v0)
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by a single shock. If the E(p,v) equation of state
is known, Eq. (2) defines the locus of shocked
states as a curve in the (p-v) plane

P=ph (pﬂsv()yv); (3)

which passes through the initial state (po,v0) and
is called the Hugoniot curve centered at (po,v).
The entropy increases along the Hugoniot curve
as the pressure increases because the shock is
irreversible.®

The elimination of u from Eqgs. (1a) and (1b)
gives

p=po=(U/v0)*(v0—12), (4)

the equation of a straight line that is called the
Rayleigh line. Because the shocked state must
satisfy Egs. (3) and (4), the intersection of the
Hugoniot curve centered at (po,00) and the Ray-
leigh line passing through (p.,v0) defines the ther-
modynamic state ($,2) behind a shock traveling
with constant velocity U in stationary material
with pressure p, and specific volume v,.

In the 50-500-kbar regime, shock-induced
states of liquids and solids, which are assumed
to lie on equilibrium thermodynamic surfaces,
are incompletely defined thermodynamic sys-
tems because not enough experimental data are
available to determine equations of state. The
experimental Hugoniot curve is determined in a
domain of the (p-v) plane where no equation of
state is known and the change in internal energy
along it is given in terms of the mechanical state
variables by the Hugoniot equation. However,
because the pressure-specific volume-tempera-
ture (p-v-T) and (E-p-v) equations of state are
not known, neither the values of the thermo-
dynamic variables, temperature T and specific
entropy .S, of shocked states along the Hugoniot
curve, nor the values of the state variables off
the Hugoniot curve can be calculated without
making assumptions.

The problem of evaluating the state variables
of shocked states is instructive to a student of
thermodynamics because it demands a working
knowledge of thermodynamic identities and in-
troduces him to a region of the (p-v) plane where
equation of state problems arise because of strong
interatomic and intermolecular forces. However,
itis more instructive to present structural aspects
of the problem by so formulating it to give some
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insight into the more general thermodynamic
question: what additional data are required to
completely characterize an incompletely defined
thermodynamic system? The problem of evaluat-
ing the thermodynamic state variables along the
Hugoniot curve is considered to specify precisely
how shocked states are incompletely defined
when a Hugoniot curve is known. The models
specified by the assumption of either constant
specific heat at constant volume C, or constant
specific heat at constant pressure C, are discussed
because they have been used to calculate the
state variables of shocked states.:’-4

To show the full significance of the assump-
tions they are combined with the general relation-
ships of thermodynamics to derive additional
properties of the models which are implicitly as-
sumed, but at first sight may not be obvious.
This structural point of view is adopted to show
how the induced properties of the model, to-
gether with the assumptions, determine a logical
way to solve the problem, and why the original
assumptions are sufficient for its solution.

Illustrative examples are provided by reformu-
lating the work of Walsh and Christian® on
metals and Rice and Walsh!! on water. The as-
sumptions and the experimental Hugoniot data
are sufficient to determine a complete equation
of state over the domain of the (p-v) plane speci-
fied by the Hugoniot curve. The assumptions
determine functional forms of equations of state
and also allow shock temperature to be calcu-
lated along the Hugoniot curve. The Hugoniot
curve is used to obtain the arbitrary functions
in the equations of state and to characterize the
models completely.

HUGONIOT CURVE IN THE (p—v) PLANE

Consider a typical Hugoniot curve 01A in the
(p-v) plane as shown in Fig. 1. It gives the locus
of all possible states attainable by passing a one-
dimensional shock wave into a fluid at a given
initial pressure p¢ and specific volume w,. The
intersection of the Rayleigh line 0a whose equa-
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EQUATIONS OF STATE

tion is p—po= (U1/v0)*(vo—7) and the Hugoniot
curve defines the shocked condition (p;,21) at 1
behind a stepshock with velocity Ui. The change
in internal energy across the shock front is given
by Ei—E¢=%(p1+po) (vo—21) which is the area
of the trapezoid 0123 with bases p; and p, and
altitude 9o—v,.

First, making no assumptions, let us decide
what information about the thermodynamic vari-
ables, temperature T and specific entropy S, of
shocked states can be obtained from a Hugoniot
curve. The equations which govern changes in
the thermodynamic variables along the Hugoniot
curve are obtained from the Hugoniot equation
and the general relationships of thermodynamics.
Differentiating the Hugoniot equation with p¢=0
gives the change in internal energy along the
Hugoniot curve as

dE=7%(vo—v)dp—$pdv. ()

The combination of Eq. (5) with the thermo-
dynamic identities

dE=TdS—pdv=(dE/8T)dT+ (3E/dv)rdv  (6)

gives the following differential equations for the
entropy and temperature along the Hugoniot
curve

TdS=CdT+T(3p/8T),dv

— 1 @—0)dp+dpds, (7)

where
(0E/8T),=C, and (3E/0v)r=T(3p/0T),—p.

Although the right-hand side of Eq. (7) can be
evaluated from the experimental Hugoniot curve,
the equations can only be integrated if the (p-v-
T) equation of state is known. However, if the
(pv-T) equation of state is known, the temper-
ature along the Hugoniot curve can be calcu-
lated directly without integrating and the entropy
can then be calculated from Eq. (7). Therefore, it
is necessary to know the (p-v-1") equation of state
to calculate values of temperature and entropy
along the Hugoniot curve.

It is useful to consider other paths between the
states 0(po,w0, 7o) and 1(p1,94,71), in particular,
01’1 and 00’1 for which the temperature is con-
stant along 01’ and 0’1 and the volume constant
along 1’1 and 00’. Integrating from 0 to 1 along
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F16. 1. A typical Hugoniot curve of a
fluid in the (p-v) plane.

01’1 and 00’1 gives the equation

T1
AE= / Co(Tp=0)dT
T

e Ip(T=T
+/ [To p( 0,?)
20 oT

T1
=/ Co(Tw=v0)dT

To
nr ap(T=Th,
+/’ ‘:T1 p( 1,9)
v oT

- p:ldv.

] — p]dv. (8)

It follows from Eq. (8) that because the spe-
cific heat is, in general, a function of volume, the
increase in thermal energy between any two
states depends upon the process used to bring
about the change of state.

Consequently, it is not possible from a known
Hugoniot curve in the (p-v) plane to estimate
what fraction of the internal energy increase is
thermal, let alone estimate values of the thermo-
dynamic variables along the curve. To obtain
any useful information from the Hugoniot curve
it is thus necessary to make assumptions about
the equation of state of the material.

In the first approximation it is assumed that
the internal energy is separable into two inde-
pendent parts: one a function of temperature
only and the other a function of volume. This is
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expressed mathematically by the equation
E(Tw)=E(T)+2E(v), 9)

from which it is obvious that the specific heat
at constant volume is, in general, only a function
of temperature and that (3E/dv)r is, in general,
only a function of volume. It follows from the
identity

(0C/du)r=T(8¢/3T7), (10)

that, for a material obeying Eq. (9), the follow-
ing equation is also satisfied
(8%/817%),=0. (11)

Integrating Eq. (11) gives a van der Waals-type
equation of state of the form

p=(3p/37),T+g(v), (12)
where either
(8p/0T),=a constant (129
or
(0p/07)y= f(v) a function of v, (127)

and g(9) is an arbitrary function of v.

It should be noted that assuming the specific
heat at constant volume either to be constant or
to be only a function of temperature is necessarily
equivalent to specifying a (p-v-T) equation of
state given by Eq. (12). Physically, this means
that the pressure is the result of two mechanisms
acting independently, The contribution from the
attractive and repulsive forces is given by the
g(v) term and is temperature-independent, while
the pressure exerted by the thermal motion is
given by f(@)}7.

THERMODYNAMIC PROPERTIES OF
THE CONSTANT C, MODEL

It follows from the assumption of constant C,
that the general (p-v-7) equation of state has

the form
p=fW)T+g (), (13)

and also that the (E-p-v) equation of state ob-
tained by integrating the identity

(0E/8p)e=Cs/f(v) (14)
has the form

E=[C/f(0)Ip+g'(v), (15)
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where g'(v) is a function of v related to g(z). The
assumption of constant C, is thus equivalent to
assuming a Mie—Griineisen type of equation of
state. The corresponding (S-v-7) and (E-v-T)
equations of state are given bv

S—Si=Cln(T/T)+ / f@)dy (16)

and

E—Ei=Cy(T~T1)—f g(v)dv (17

The elimination of 7 from Egs. (13) and (17)
defines the relationship between g'(v) and g(v),
and the elimination of 7" from Egs. (16) and (17)
gives the complete E(.S,9) equation of state. Thus
for a given value of C, the constant £, model is
completely defined over a domain of the (p-v)
plane by the knowledge of the functions g(v) and
f(v) over the domain and a point (E;,S:,T:p:,%:)
within the domain. However, for the construc-
tion of the isentropes and isotherms, it is suffi-
cient to know g(v) and f(v), i.e., the (p-v-T)
equation of state and a point (7%,p4,2;). The isen-
trope in the (p-v) plane through the point
(Ts,p4,v:) 1s constructed from Egs. (13) and (16).
Setting AS=0 in Eq. (16) defines the tempera-
ture as a function of volume along the isentrope
and the corresponding pressure is calculated
from Eq. (13). An isotherm through each point
of this isentrope can then be constructed directly
from Eq. (13). The isotherms define new starting
points for isentropes and by repeating this pro-
cedure the isentropes and isotherms covering
the domain can be constructed.

It is interesting to reformulate some of the
earlier work of Walsh and Christian? in which
the Hugoniot curves of Al, Cu, and Zn were
measured experimentally and used with the as-
sumptions of constant C, and constant (3p/37),
to determine neighboring isotherms and isen-
tropes.

In this case the model is specified by the as-
sumptions of constant C, and (8p/387),, and the
model constant b is defined by the equation

b= (3p/dE),= (3p/dT )./ C.. (18)

The (p-v-T), (E-p-v), and (S-v-7) equations of
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state are given by the equations

p=bC,T+g(v), (13)
E=(p/b)+g'(v), (15

and
S—=S8;=CIn(T/TH+bC,(v—vs). (16"

The knowledge of p, v, and T along any one curve
in a domain of the (p-v) plane is sufficient to de-
termine the unknown function g(v) and the
(p-v-T') equation of state over the domain. Walsh
and Christian calculated the temperature along
the Hugoniot curve to determine the (p-v-T)
equation of state, but here an alternative method
is presented. As temperature is known as a func-
tion of volume along an isentrope from Eq. (16'),
it is sufficient to determine the position of an
isentrope in the (p-v) plane in order to determine
the (p-v-7) equation of state and completely
characterize the model. Over the domain of the
(p-v) plane specified by the experimental Hugo-
niot curve, the (E-p-v) equation of state is de-
termined by combining Egs. (2) and (15') to
determine the function (zg'). The position of the
isentrope through the initial condition is calcu-
lated with the (E-p-v) equation of state by in-
tegrating the first law with dS=0. The (p-v-T)
equation of state follows from this isentrope and
Eq. (13%). Thus the determination of the experi-
mental Hugoniot curve through the known initial
condition (Eo,50,To,p0,20) allows the evaluation
of the arbitrary function g'(v) in Eq. (15), and
the calculation of the position of the isentrope
through the initial condition, and thus is suffi-
cient to define the model completely. For this

model the pressure difference between isotherms

whose difference in temperature is equal will be
equal and independent of volume (see Fig. 1).

THERMODYNAMIC PROPERTIES OF
THE CONSTANT C, MODEL

The assumption of constant C, is equivalent
to assuming that the enthalpy H is separable
into two independent parts: one a function of
temperature and the other a function of pressure.
The thermodynamic identity

(0Cs/0p)r=—T(8°/31?), (19)
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applied to the model gives the equation
(8%/0T%),=0, (20)

which determines the form of the (p-v-T7) and
(H-p-v) equations of state. Integrating Eq. (20)
gives

v=(8v/9T),T+-2(p), (21)

with either
(dv/987),=constant
or (22)
(99/0T)p=n(p),

where & (p) and 7(p) are arbitrary functions of p,
and integrating the thermodynamic identity

(0H/3v)p=Cyp/n(p) = €(p) - (23)
gives the (H-p-v) equation of state as
H=[Cy/n(p) Jo+2'(p), (24)

where ®1(p) is a function of p related to &(p).
The equation of state

v=n(p)T+2(p)

and the relationships of thermodynamics give
the equations

(25)

H—Hi=Cy(T—T)+ / “a)ap,  (26)

r
S=8,=Cla(t/T)~ [ a@iap, 1)

b3
which define the implicity assumed properties
of the constant C, model. The functions &(p),
7(p), and a known point (H;S;,Typs:v:) in a
domain of the (p-v) plane completely define the
model over this domain. Thus a knowledge of
either the pressure, volume, and temperature
along any two curves in the (p-v) plane, or one
of the functions and the pressure, volume, and
temperature along any one curve is sufficient
to define the model.

It is interesting to reformulate the work of
Rice and Walsh® on water and determine the
(p-v-T) equation of state by integrating along
the Hugoniot curve to calculate shock tempera-
ture. The assumption of a constant C, model
with C,=0.86 cal/g-deg for $>25 kbar was



1030

based on the low-pressure work of Kennedy.?
Rice and Walsh determined (8H/dv), at different
pressures by an elegant reflected-shock technique
in which points on Hugoniot curves centered on
the incident Hugoniot were measured. The ana-
Iytic fit for ¢(p) in the range 25-250 kbar is given
by

log1oe=2.17943-40.0030338, (28)

with € and  in kilobars. Although the constancy
of C, necessitates that, generally, (8H/dv), is
only a function of pressure, the converse is not
necessarily true (see Appendix).
Rewriting Eq. (28) formally as
e(p) =exp(n-+mp),
and substituting in Eq. (25) gives
(89/9T)p=Cyp/ (™) ; (29)

and the (p-v-7) and (S-p-T) equations of state
above 25 kbar are given by

(28')

v=[C,T/ (e""?) 14+2(p) (30)
S=38i=Cp In(T/T9)+ (Cp/m)
X[exp— (n+mp)—exp— (n+mpy], (31)

where the point (S;7:,p:) lies on the 25-kbar
isobar. Now the calculation of temperature along
the initial Hugoniot curve above 25 kbar is suffi-
cient to determine the (p-v-7) equation of state,
the isentropes, and the isotherms. The shock
temperature is calculated in the 25-250 kbar
range by an analogous method to the one used by
Walsh and Christian for metals, The general
differential equation for temperature along the
Hugoniot curve,

CodT—T(8v/3T)pdp =3[ (vo—v)dp+pdv] (32)
combined with Eqgs. (29) becomes

AT —Tdp exp— (n+mp)
= (1/2C,)[ (vo—v)dp+pdv].

Equation (33) has a simple integrating factor,

R(p) =(eXP‘ / 2;'(%75)

=exp[ (1/m) exp— (n+mp)] (34)
2 G. C. Kennedy, Am. J. Sci. 248, 540 (1950).

(33)

M. COWPERTHWAITE

and the shock temperature is given by
TR(p)—TWR(p:)

1 $< 250 kbar
R(P) (wo—v)dp+pdv].  (35)

2Cp J pi=25 kbar

The temperature 773 at 25 kbar on the Hugoniot
curve is calculated from the equation

Uy 0iso= (00/0 1)y =35 1ar (T2 Liso),

where 2;, and T, lie on the 175°C isotherm de-
termined by Bridgman.'?

The temperatures calculated {rom Eq. (35) are
obviously found to be in good agreement with
those calculated by Rice and Walsh. The iso-
therms intersecting the Hugoniot in the 25-250
kbar region now follow directly from Eq. (30)
and the isentropes intersecting the Hugoniot
curve are calculated from Eqgs. (30) and (31)
by the method described previously.

(36)

APPENDIX
To show that the equation
(0H/0T),/(8v/3T)p=(0H/0v),= F(p)

does not imply that

(237

(1) (. is a constant or that
(2) (89/8T),is only a function of p,

consider the following equations:
H=6(p) [(1)+2(p)+Cy, (37)
v="9(@) J(1)+e(@)+Cs, (38)
where 0(p), f(1), ®(p), v(p), and ¢(p) are gen-

eral functions and do not refer to earlier equa-
tions. Obviously, C, is not constant and (dz/97),
is not only a function of p, However, an equation
of type (23") is satisfied,

(aH/aT)p/l(av/aT)p

=0(p) [ (D) /@) (1) =F(p), (23)
with the condition ¢'(p)f(T)=—~(@)T1"(T)
specified by the thermodynamic identity

(8C,/ 3p)r=—T(0%/37T%),. (19)

12 P, W. Bridgman, Proc. Am., Acad. Arts Sci. 74, 399

(1942).



