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In the interval
G*/2C<3e< G224,

the isoenergetic curves are no longer closed, and
they no longer cross the axis /. With 3¢ decreasing
towards G?/2C, which is the value that the energy
takes at the equilibrium L=G, the curves tend
to flatten themselves onto the line L=G. Thus
this equilibrium is also stable, and the body now
“rotates” in the plane Oxy.

In the numerical example we chose 4=
0.999378, B=0.999498, and C=G=1. These
corresponds to normalized values for the Moon.
One also computes that

JC4=0.50031119,
35=0.50025112,
3 =10.50000000.

In more intuitive terms, the isoenergetic curves
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look like the level curves of a typical landscape.
The permanent rotation around the axis Ox of
smaller inertia appears at the tope of a hill; the
permanent rotation around the axis Oy of middle
inertia constitutes a pass half way on the slope
of the hill. The northern and southern sides of
the landscape are made of two longitudinal
valleys at the bottom of which flows the singular
line representing the permanent rotation around
the axis Oz of larger inertia.

Such a phase representation of the Euler-
Poinsot problem bears striking analogy with that
of a simple pendulum.
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The fundamental principles and relations governing normal shock waves in a compressible
fluid, in both the classical and hydromagnetic cases, are stated and derived in a manner suitable
for inclusion in an undergraduate physics curriculum. Acoustic and magnetoacoustic velocities
are derived as limiting cases of very weak shocks, and the second law of thermodynamics is
employed to demonstrate that fluid flow through a stationary shock wave always requires a

supersonic-to-subsonic transition.

INTRODUCTION

N a recent review! of texts in fluid dynamics,
the reviewer noted: ‘It is unfortunate that
physicists have generally abandoned the physics
of fluids as a research frontier to the mathema-
tician, who régards a fluid as a nonphysical con-
tinuum, and to engineers, who stress the empiri-
cal means of solving practical problems.” Another
commentator? points out that “A paradox con-
fronts contemporary physicists; although scope,
importance, and utility of fluid dynamics in phys-
ics have grown spectacularly, teaching of the

* Work performed under National Aeronautics and
Space Administration Grant No. NASA 179-61.

I R. J. Seeger, Am. J. Phys. 34, 173 (1966).

2 R. G. Fowler, Phys, Today 19(6}, 37 (1966).

subject in physics departments has been receiv-
ing less and less attention.” In particular, it is
often the case that the subject of shock waves in
compressible fluids—so vitally important in the
present era of space physics, plasma physics, and
high-speed flows—is almost? completely neglected
in the undergraduate physics curriculum and
rarely mentioned in the graduate curriculum.
Furthermore, the customary discussion of shock
waves, with its emphasis on Mach numbers
{which look like constants to the uninitiated) is
unsympathetic to the physicist who prefers to

$R. P. Feynman, R. B. Leighton, and M. Sands, The
Feynman Lectures on Physics (Addison-Wesley Pub. Co.,
Inc., Reading, Mass., 1963), Vol. 1, Chap 51, is a notable
exception.
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see explicit dependence on physical quantities.
Hence this paper attempts to present the shock
wave, both classical and hydromagnetic, in its
simplest form, appropriate for inclusion in an
undergraduate physics curriculum. The trans-
port equations of fluid dynamics are used in an
integrated form, and the use of Mach numbers,
except for the sake of completeness, has pur-
posely been eschewed. (The customary treat-
ment in terms of Mach numbers may be found
in any good text on the subject.*¢)

A shock wave can be understood by analogy
with a breaking water wave: since the velocity
of a water wave is proportional to the depth of
the water below it, significant differences appear
in the propagation velocities at different heights
in the wave once the crest height becomes com-
parable to the depth; the crest steepens and
finally breaks. In the case of a shock wave in a
compressible fluid, a disturbance causes a pres-
sure wave to propagate. However, in a finite dis-
turbance, as distinct from an ideal sound wave,
the pressure wave heats the medium as it passes
so that the acoustic velocity increases over the
duration of the disturbance. Imagine the dis-
turbance as a succession of infinitesimal pulses,
each one producing an infinitesimal wavelet
which, passing through the medium already ele-
vated in temperature due to preceding wavelets,
propagates more rapidly than its predecessors
and overtakes them. Imagine, also, a convective
effect due to the fact that a wavelet propagates
at the local sound velocity relative to the me-
dium, already set in motion by the preceding
disturbances. Thus, analogous to the steepening
of the water wave, there is a compressional wave
forming whenever the signal speed of a wavelet
is increased by the effect of preceding disturb-
ances. However, in the case of the gas, compres-
sion (steepening) ceases when the wave reaches
a critical thickness (of the order of 10 mean free
paths), so that the large temperature and ve-
locity gradients within the wave set limits to
its thickness and eventually cause it to decay as

*H. W. Liepmann, and A. Roshko, Elements of Gas-
dynawmics (John Wiley & Sons, Inc., New York, 1957).

5 J. N. Bradley, Shock Waves in Chemistry and Physics
(John Wiley & Sons, Inc., New York, 1962).

¢ J. W. Bond, Jr., K. M. Watson, and J. A. Welch, Jr.,
Atomic Theory of Gas Dynamics (Addison—Wesley Publ.
Co., Inc., Reading, Mass., 1965).
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energy is dissipated through viscous losses and
heat conduction.

To analyze this situation the shock wave is
considered as a thin region—a surface of dis-
continuity for mathematical purposes—on either
side of which the gas is taken to be in thermal
equilibrium on the assumption that the duration
of equilibrium on either side of the shock is long
as compared with the transit time of the shock
The one-dimensional “jump conditions” across a
normal shock wave (one in which the wave front
is perpendicular to the direction of propagation)
are mathematically simple and can be included
quite naturally in a classical junior or senior-
level course in Thermodynamics, following the
discussion of the Joule-Thomson effect, under
the rubric “Steady-State Flows.” This problem
also serves to derive the velocity of acoustic waves
as the limiting case of a very weak shock wave,
and to illustrate the utility of the Second Law of
Thermodynamics in determining the direction of
an irreversible process. With the inclusion of
magnetic terms the theory can be applied to
hydromagnetic shocks and to derive the mag-
netoacoustic wave velocity.

The theoretical importance of the shock wave
lies in the fact that real waves are finite in ampli-
tude; their practical importance is well known
from the phenomena of blast waves, supersonic
flow, sonic booms, and, more recently, their ap-
plication to the motion of satellites and other
bodies moving through the interplanetary and
interstellar media. As a research tool, shock
waves furnish a significant, if transient, means of
rapidly and homogeneously heating gases to tem-
peratures high enough to cause dissociation and
ionization. It is hoped that even the brief treat-
ment given here may broaden the student’s
grasp of nonequilibrium nonlinear processes and
lessen the possibility that this important and
timely area of physics be neglected by default.

I. STEADY-STATE TRANSPORT EQUATIONS

As in the case of the Joule-Thomson effect,
the flow of fluid through a region (see Fig. 1)
containing the shock, on whose boundaries ther-
modynamic equilibrium prevails, is considered.
The problem is analyzed in the shock system in
which the wave is at rest, and the channel is
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F16. 1. Normal one-dimensional shock wave (shock re-
gion) shown in the shock system. T, temperature; p,
pressure; p, density; #, fluid velocity; B, magnetic-field
intensity. Direction of propagation of shock in medium
initially at rest indicated by arrow c..

assumed to be of unit area; conservation of mass
requires that the same amount of matter as
enters leave the shock region per second:

ou=p'u' =J,, 1)

where p is mass density, # is stream velocity, J,
is (constant) mass flux density, and primed
values refer to quantities downstream of the
shock.

Consider an element of fluid, mass px, which
crosses the left boundary of the shock region in
one second: by the time it emerges at the right
boundary of the shock region, its momentum has
changed due to the forces acting upon it in the
shock region (the Second Law is used to prove
that they are retarding forces). Since the fluid is
not accelerating at the boundaries of the shock
region, the hydrostatic pressures must exactly
balance the net effect of the complex of forces
acting within the shock region, which cause the
momentum of the fluid element to change from
pu? to p’u’?. Hence,

> = p'1'2— pu?

net rate of change of
momentum per second

net accelerating
force on element/’

=P—P’=(

(As an aid to intuition, it is noted in advance
that both sides of this equation will be negative.)
This equation may be rewritten

purtp=p'u4p’ =d,, (2)

where p is gas pressure and &, is a constant.

The third transport equation is obtained from
the conservation of energy, and is derived as in
the Joule—Thomson effect, but with the addition
of a term, 1 (pu)u?, to represent the transport of
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kinetic energy by the fluid. Imagine pistons lo-
cated at 4 and A4’ forcing the fluid through the
shock, and set

net change in internal plus
kinetic energy of element pu

]

_ <net work done by>

pistons on pu
thus:

p’u (E' /M3 —pu(E/ MA4-3u?) = pu—p'y/,

where E is internal energy/mole and M is molec-
ular weight. This gives the equation of energy
transport after substituting from (1):

E+pM/p+3Mu?
=E'4p' M/p'+iMu2=H,:  (3)

where it is recalled that enthalpy,
H=E+pM/p=C,T,

C, is molar specific heat at constant pressure, and
Hy is (constant) stagnation enthalpy/mole.

Equations (1), (2), and (3) contain four vari-
ables, #, p, p, and, for a perfect gas, 7. If we
assume that the conditions on one side of the
shock are generally given, then one more equa-
tion is needed to solve the system and find the
conditions on the other side—the equation of
state:

p=(o/M)RT, (4)

where R=C,—C, is the universal gas con-
stant, and C, the molar specific heat at constant
volume. The system is now complete and may
be solved.

II. SOLUTION OF TRANSPORT EQUATIONS

Given velocity, temperature, and pressure on
either side of the shock, the system of equations
can be solved in terms of the constants Jq,
®¢, Hy evaluated from the given conditions. Thus,
a quadratic equation for # is obtained by sub-
stituting Egs. (1), (2), (4), and H=C_,T into
Eq. 3):

u(Cyo/R—3) —uCp®o/RI+Hy/M=0. (5)
This equation has two valid solutions,
. G®o/Jo

Cp+cv[1:|:A]; (6)

uuU
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where

N =1— (4H R &/ MC2) (C,/R—3%), (T)

and since C,/R>%, all the constant coefficients
in Eq. (5) are positive; hence, by Descartes’ sign
rule,” both roots are real and positive, 0 < AZ<1.
Furthermore, if one substitutes for Jo, ®¢, Ho
in terms of physical quantities known on one
side of the shock region, one finds that A=0
only in the special case

W= =yRT/ M=, (8)

where ¢ is the speed of sound, and v=C,/C..
Thus, an ideal sound wave may be viewed as the
limiting case of a very weak shock, and substi-
tution in the equations of transport shows that
the other physical parameters are undisturbed
by the passage of the shock. (Note: shock strength
is usually defined by the ratio #'/p or p'/p—1.)

Even if given only two pieces of information,
concerning temperature and velocity alone, it is
still possible to eliminate pressure and density
from Egs. (2) and (3) to obtain

u+RT/ Mu=1'+RT' ) Mu' =&,/ T,
CpT 43 M= C,T'+3 Mu'*= Ho;

&)
(10)

which may, depending on the circumstances, be
solved for T (u,u’) and 77 (u,u’):

T=(Mu/RC)[Cott' —Ru'+u)/27], (11)

T' = (Mu'RCH[Cou— R(u+u")/2]; (12)
or for ' (Tyu), T'(T\u):

' =uR(2C, T/ Mu>+1)/(Cp,+C.), (13)

T'=T+(M/2C,) (u*—u'?); (14)

and, without any additional information, one
may calculate the density ratio and the shock
strength

o u P s Mu? u
£ (e
p u P RT u
The equations expressing the change in physical
parameters crossing the shock are known as
Rankine-Hugoniot equations; since the original

equations are symmetric with respect to the
shock, primed variables may be substituted for

(15)

7 J. R. Britton and L. C. Snively, Algebra (Rinehart and
Co., Inc., New York, 1950), p. 3835.
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unprimed variables in the above formulas, and
vice versa.

The conservation equations are satisfied
whether u#<#' or u>u', although intuition ex-
pects the latter. To see that #>u’, note that
passage through the shock region is an irre-
versible process and must result in an increase of
entropy in the gas (which is an isolated thermo-
dynamic system). If the molar entropy, .S, of
an ideal gas is expressed in terms of its enthalpy
it is found

S'—S=Cpoln(H'/H)—RIn(p'/$)>0. (16)
From Egs. (2) and (3),
H'/H=1+(M/2H)(u2—u");
=1+ Mu*—u'?/2C,T

p'/b=1+ (pu’—p'u")/p
=14+Mu(u—u')/RT

(17)

is obtained and Eq. (11) may be used for T in
Eq. (17). If the above expressions are substi-
tuted into Eq. (16), the mathematical behavior
of the entropy change (S'—S)/R=f(x) can be
investigated as a function of x=u'/%:

(v—1f(x)=v Inx+In[y+1— (y—1)x]
~In[(v+1)x+1—~].

From this equation it is immediately obvious
that in the case of a sound wave ' =u=¢, x=1,
there is no entropy change, f(1)=0.

To locate the extrema of f(x), set

@2 —y(y+1) (x—1)?
dx x[v+1—(y—Dx][(v+Dx+1—7]

Thus, f/(1)=0 is the only extremum, and since
F'(x) <0 for

=0/ +D)<e<(y+1)/(v—1)

then f(x) is monotonic, decreasing in this range,
and the only allowed values of x are those for
which 0<f(x) < o ; ie.,

(v—1)/(v+1)<x<L1.

Hence, »' <u, as expected, the lower limit being
approached in the limiting case of an infinitely
strong shock, #>>c.

It is clear from the second-order zero in Eq.
(19) that the second derivative also vanishes for

(18)

=0. (19)

(20)
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x=1. Thus, a series expansion of f(x) about this
point vields

S'—S= RNy (y+1) (1 —u'fu)*  (21)

so that for weak shocks, u==¢, the change of
state is nearly isentropic.

The shock system is the natural one to use
in many situations where so-called ‘“standing
shocks” are produced, the source of the dis-
turbance being considered stationary—e.g., wind-
tunnel models, re-entry bodies, laboratory plas-
mas, and the “‘bow wave” standing between the
earth’s magnetic field and the expanding solar
corona. For other applications it may be ad-
vantageous to consider the shock wave as propa-
gating through the initially stationary medium—
e.g., blast waves and shock tubes. To do this
the shock wave is considered as propagating with
some velocity ¢, and the fuid behind it is
imagined to be pushed along by a piston with
velocity #,. The Rankine-Hugoniot equations
are then transformed by substituting

(22)

) _ .
U=Coy U =U—Up=Cs—Uyp.

It is customary to express the Rankine-Hugo-
niot equations in terms of Mach number, defined
as the ratio of local fluid velocity to local sound
velocity : My=u/c; My=u'/c’. This yields

oo =t fu=[24 (y— ) M) (yH ) M5 (23)

T/ T=14+[2(y—1)/(v+1)*]
XLy M2 41)/ M2 (M —1);

p/p=1+[2v/(y+1)1(M2-1).

These equations show that the critical parameter
in shock-wave phenomena is the ratio of the
kinetic energy of directed motion to the thermal
kinetic energy, since M¢« Mu?/RT. From Eq.
(23) it is noted that the allowed values of
w'/u correspond to 1< M2< o and (y—1)/2vy
< M2<1. This means that in the shock system
the transition must always be from supersonic
to subsonic (i.e., with reference to the local
sound velocity).

(24)
(25)

III. HYDROMAGNETIC SHOCK WAVE,
TRANSVERSE MAGNETIC FIELD

Consider the case of a fluid with infinite elec-
trical conductivity; if the fluid is a neutral
plasma consisting of ions and {ree electrons the
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following equations apply to the ions which con-
stitute the bulk of the fluid. Since any motion of
the fluid across magnetic field lines would give
rise to infinite currents due to induced emf’s,
infinite conductivity requires that the magnetic
field is embedded, ‘“frozen,"” in the material, and
constrained to move along with it. Hence the
flux density B must vary directly with the den-
sity of the fluid:

B'/B=p'/p; (26)

which, since Eq. (1) is unchanged, gives rise to
the “induction” condition across the shock

Bu=B'uw'=§&,, 27

where &y=const, with dimensions of electric-
field intensity. Equation (27) can also be de-
rived in an equivalent way by considering that
an observer in the shock system feels an electric
field &=|—uxB|=uB due to the transverse
magnetic field flowing past him with the fluid ve-
locity. This magnetic field is tangential to the
shock (considered as a mathematical surface),
therefore it must be the same on both sides of it,
hence Eq. (27).

Since the magnetic field participates in the
flow it must also be included in the energy and
momentum equations. While the concept of mag-
netic energy density B?/8x ({cgs units) is gen-
erally understood after the student’s first or
second vear of physics,® that of magnetic pres-
sure is somewhat more difficult. In the case of
frozen-flow, one can picture the flow and the field
transverse to it as moving along like a troop of
lancers; the total flux (lances) remains constant,
but the flux density changes as the flow contracts
or expands (as the troop closes up or spreads
out). If a fluid element of dimensions x, y, 2
(ul|x,B||z) is compressed by dx, the constancy of
the flux implies d(Bx)=0 which in turn implies
an increase in the magnetic energy of the
volume element:

dE,, =vzd (B%/8%) = —yz(B?/8r)dx = —yzp.dx,

where p.=B?%/8r is the pressure or force/area
with which the magnetic field resists compression
in the x direction.

Although Egs. (1) and (4) are unchanged,
Egs. (2) and (3) must be altered by the addition

8 E. M. Purcell, Eleciricity and Magnetism (McGraw-
Hill Book Co., New York, 1965), Chap. 7.
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of terms equal to B?/8% to both p and pE/M to
account for the pressure and energy density of
the magnetic field. This gives:

pudp+BY/8r = p'ut+ '+ B" /8w =Py, (28)
E+Mp/p+3Mu*+ MB*/4wp
=E'+ Mp'/p'+§ Mu"
+MB/2/47FP,:Hmr (29)

where &,,, H,, are constants.

The set of five equations (1), (4), (26), (28),
and (29) can be reduced, by substitution, to
a cubic in u:

1w (Cp—R/2) — 2@, Cp/ Jo+uRH/ M

+ (8¢2/87J0) (C,—2R) =0, (30)

and if & vanishes the quadratic of Eq. (35) is
recovered. Since all of the constant coefficients
are positive, Descartes’ rule of signs shows that
that there are one negative and two positive
roots of Eq. (30). The negative root may be dis-
carded as unphysical, and if the fluid velocity (call
it U) is known on one side of the shock, then
u= U is one root of Eq. (30). Thus, this equation
can be reduced to a quadratic by dividing by
(u—U):

(Co—R/2) T2+ [ (Co— R/ 2) T U~ Cyp 1t

F+(Cp—R/2) T U*—®,C, U

LRI Hn/M=0, (31)

an equation easily solved once the coefficients
have been evaluated from initial conditions.

There is an important special case for a mon-
atomic perfect gas of charged particles of mass m,
charge ¢: if the cyclotron {requency ¢B/m of the
ions is much greater than their collision fre-
quency, they will spiral around field lines which
inhibit motion radially outward. Thus, the ions
have only two degrees of freedom and Cp,=2R.
In this case the last term of Eq. (30) vanishes;
what remains is a quadratic:

302 —Aud,) Jo-+ 2 Hp/ M =0, (32)

which has two positive roots.

It has been shown, for a classical shock, that an
infinitesimally weak shock corresponds to an
acoustic wave. The case of a magnetoacoustic
wave is now examined by substituting #'—u
=du, p'—p=dp, etc.

The appropriate equations become

d{pu) =pdutudp=0; {33)
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d(Bu)=Bdu+udB=0; (34)
d{pu?)+dp+BdB/4r=0; (33)

dH+ Mudu+ (M/4w)d(B*/p)=0.  (36)

Equations (33), (34), and (35) may be solved
for dp, dB, and dp:

dp=—{p/u)du, dB=—(B/u)du,
dp= (B*/4nu)du — pudu,

and the results substituted into Eq. (36) in order
to show that the differential of entropy still
vanishes:

TdS=dH— Mdp/p=0, 37

and the hydromagnetic shock wave is isentropic,
at least to first order. If Egs. (33) and (34) are
substituted into (33), it is found that, after re-
placing dut by dp and dp,

(B2/4xp—u?)dp+dp =0. (38)

Thus, the magnetoacoustic velocity, which corre-
sponds to the speed of sound in the classical
case, is given by

dp B yRT B
W=cpl={— ) +—=—rt—u
8

(39)
dp dap M Adxp

In the limiting case B — 0, 4 — ¢= (dp/dp)g, the
speed of sound.

For a very tenuous plasma such as the inter-
planetary gas or for very strong magnetic fields

> co=DB/(4wp)3,

the Alfvén velocity, characteristic of waves when
particles of the fluid interact chiefly through the
medium of the magnetic field, the effect of col-
lisions being negligible. This is the case of the
“collisionless”” shock in which the collective be-
havior of the particles as a fluid is due to the
magnetic fleld’s gluing them together. An excel-
lent example of this phenomenon is afforded by
the solar wind which forms a shock wave in
flowing around the earth’s magnetic field. This is
possible, although the classical mean free path of
ions in the solar wind is several times greater
than the earth-sun distance, because the gyro-
radius of particles in the field is of the order of
500 km, which is much less than the dimensions
of the shock wave, which is semicircular in form,
with a radius of the order of 100 000 km, about
15 earth radii.



