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A mathematical analog for one-dimensional compressible flow in a chemically

reacting fluid is constructed and used as a vehicle for a simplified introduction to
such flows, with particular application to detonations. The presentation includes
a concise self-contained introduction to the elements of nonreactive compressible

flow.

I. INTRODUCTION

Various aspects of the theory of compressible fluid flow
have been discussed in this journal: history and overview,!
hyperbolic partial differential equations and the method
of characteristics,2-4 supersonic flow,>-7 shock waves,8-13
and similarity methods.’® The related kinematic wave
equation, which we shall be using here, has been discussed
and applied to other types of flow.!> Not covered is our topic
here—compressible flow in a chemically reactive fluid, with
particular application to detonation. Also lacking is a
concise introduction to nonreactive compressible flow in one
dimension, which we present here in a self-contained fashion
as a preliminary to the discussion of detonation.

For the purpose of more easily studying various topics
in detonation theory, | have recently constructed a simple
mathematical analog for the equations describing one-
dimensional compressible flow in a chemically reacting fluid
(hereafter reactive flow). This analog is an ideal vehicle for
a simplified introduction to detonation theory, for, like other
such analogs, it eliminates most of the complexity of the
complete system of equations while retaining their essential
features.

Some acquaintance with nonreactive flow is needed as
background for this discussion, principally (i) the role of
characteristics as information carriers, (ii) the nature of
shock and rarefaction waves, and (iii) the degradation of
a shock as it is overtaken by rarefaction. We therefore
precede our discussion of detonation by a short introduction
to nonreactive flow. Again an analog—in this case a well-
known one-—is the most appropriate vehicle. This discussion
of nonreactive flow can stand alone as an introduction to
that subject.

Because our entire presentation is based on mathematical
analogs, a word about their nature is in order. An analog
is a qualitative representation of the original. (There may
of course be the added bonus that the original reduces to the
analog in some special or limiting case, but this is by no
means necessary.) The analog is constructed or designed,
not derived. The design involves a trade off: one tries to
maximize simplicity while minimizing the loss of important
properties of the original. Simplicity is the analog’s strong
point. Specifically: (i) exact solutions are easier to find and
more likely to exist, (ii) the tedium of routine mathematical
manipulations is greatly reduced, and (iii) the essential ideas
are less likely to be obscured by extraneous detail—in the
full system one may fail to see the forest for the trees.

The construction of the analog is described in Sec. 11.
Section 11 is the introduction to nonreactive flow. Section
1V is a discussion of some general properties of reactive flow

1050 Am. J. Phys. 47(12), Dec. 1979

0002-9505/79/121050-10$00.50

and of how wave motion is modified by the presence of
chemical reaction. Sections V and VI constitute the intro-
duction to detonation theory: Sec. V is a qualitative dis-
cussion and Sec. VI is a quantitative treatment, with results
for the steady detonation wave. For reference, the complete
set of equations for the physical system are set down in the
Appendix.

II. THE ANALOG

Our analog for reactive flow is an extension of the so-
called kinematic wave equation, which is, among other
things, one of the standard analogs for nonreactive flow. We
review its construction in Sec. 11 A before extending it to the
reactive case in Sec. 11 B.

A. Nonreactive analog

The kinematic wave equation turns up in many places,
but we are concerned here with its role as the simplest an-
alog for compressible fluid flow. Johnson’s paper!* and the
book by Whitham'® may be consulted for background. To
construct it, we retain the partial differential equation ex-
pressing the conservation of mass, but replace everything
clse—the equation of state of the material plus the partial
differential equations expressing the conservation of mo-
mentum and energy—Dby a single algebraic relation.

Consider one-dimensional flow in a compressible fluid
filling a channel of constant (unit) cross section. By as-
sumption, all quantities are functions only of distance x
along the channel and of time ¢; these are our independent
variables. An important quantity is the mass flux p,

p=pu, (1

where p is density and  is particle velocity (we choose the
symbol p because the mathematical role of mass flux in the
analog resembles that of pressure in the physical system).
Choose two fixed stations x| and x5 in the channel. The time
rate of change of mass in the volume between these stations
must be equal to the net mass flux through its boundaries,
that is

%j:lxz p(x,1)dx = p(x2,t) = p(x1.t). @)

Taking the time derivatives inside the integral sign and
passing to the limit x; — x;, we obtain the equivalent
partial differential equation expressing the conservation of
mass

0:+p.=0. (3)
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We would like to make a closed system from this single
equation in the two unknowns p and p. One way to do this
is to assume that the mass flux p and the density p are re-
lated by an “‘equation of state”

p=p(p). (4)

If this is so then we have the determinate system
p:+px =0, (52)
p=p(), (5b)

which can also be written
(6a)
(6b)

p: +c(p)px =0,
c(p) = p'(p).

The quantity ¢ turns out to be the sound speed, that is, the
propagation speed of small disturbances. The partial dif-
ferential equation (5a) or (6a), together with the algebraic
relation (5b) or (6b), is the kinematic wave equation; it is
the simplest analog for (inviscid) nonreactive flow.

In physical applications p(p) is chosen to give a good
approximation to reality. Here we want the simplest form
with the desired properties. For us, p(p) plays the mathe-
matical role of an equation of state. As such, it should have
the essential properties that both p and ¢ increase with p,
that is, that the function p(p) be monotone increasing and
concave upwards. (The increase of ¢ with p is what gives rise
to nonlinear effects such as the steepening of a compression
wave into a shock.) The simplest choice for p(p) satisfying
these requirements is

p=(1/2)p%
c=p. @)

This'choice gives the simplest nonlinear hyperbolic equa-
tion

pi+ ppx = 0. (8)

At this point we pause to comment on our terminology
and the spirit in which we view the analog. Once we have
constructed the analog, we will for the most part forget how

‘we obtained it, and simply regard it as a given mathematical
object put forward as an analog for the complete set of
equations describing the physical system. As we study the
analog, we see certain analogies between the quantities
appearing in it and some of those in the physical system. We
do not then hesitate to apply the terminology of the physical
system to these quantities. In this sense, the quantities we
have called p, p, and ¢ are the mathematical analogs of the
physical density, pressure, and sound speed, and the func-
tional relation p(p) plays the role of the equation of state.
The relations between them in the analog are only similar
to, and not identical with, those of the physical system.
Thus, for example, in the physical system the sound speed
is related to the equation of state by the relation ¢2 = p’(p)
[with p(p) an isentrope], whereas the corresponding rela-
tion in the analog is ¢ = p’(p), with ¢ replacing ¢2. (To re-
tain dimensional consistency in the analog we must assign
to the quantity p in it the dimensions of mass flux, that is
[p] = [pu] = mi=2t~")

Johnson'> and Whitham'® discuss several applications
of the system (6a) and (6b). Because it expresses mainly
conservation of mass, it is often a good approximation in
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those situations, such as river or glacier flow, in which

momentum and energy changes are small. One must of

course choose an appropriate p(p) for each application,

guided by physical insight and empirical data. Interestingly

enough, it can also be a good approximation in some sit-
uations in which momentum and energy changes are large.

An example is a rarefaction wave moving into a com-

pressible material (in an initially constant state). Here the

analog becomes an exact description if we take for p(p) the

appropriate isentrope of the material.

What are the shortcomings of the analog? The main one
is that it has waves propagating in only one direction
(toward positive x). This of course restricts the class of
problems to which it applies: wave reflections are excluded.
Less serious is the absence of entropy production and
thermal effects. In the physical system entropy is produced
in the irreversible process represented by shock jumps. But
entropy production and thermal effects are often relatively
small, and a great deal of complexity is removed by omitting
them.

B. Reactive analog

We choose the simplest chemical reaction 4 — B,
which we allow to proceed only in the forward direction. We
specify the composition of the system by the mass fraction
of B, which we call A. This dimensionless variable A is a
progress variable for the reaction, progressing from zero at
no reaction to one at complete reaction.

We have then A as a second dependent variable (in ad-
dition to p). Now in the physical system, the addition of
chemical reaction changes the governing equations in two
ways: the pressure depends on the composition, as well as
on other state variables, and there are one or more addi-
tional differential equations describing the rate of change
of the composition with time. So here: to extend the non-
reactive analog to include chemical reaction we do two
things: (i) let the equation of state depend on A as well as
p, and (ii) add a second partial differential equation (the
rate equation) describing the progress of the reaction.

We have then for the equation of state

p=p(p.A). (9)

For the rate equation, we take a simplified version of that
for the physical system. By assumption each fluid element
is a closed adiabatic system. The rate of change of A within
a particular fluid element, as seen by an observer moving
with the element, is given by an ordinary differential
equation

ar_
e’
with r the reaction rate, usually taken to be a function of

the local thermodynamic state. The corresponding partial
differential equation in x-f space is

(10)

Ntul,=r, (11)

the left-hand side being the convective derivative, that is,
the directional derivative along a particle path. We use this
equation, omitting the term u A, for simplicity, so that our
rate equation becomes just

A =r(p,A), (12)
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where we have taken r, like p, to be a function of the local
state (p,A).

Collecting these results, we have as our reactive flow
analog the system

pit+px=0, (13a)

A=, (13b)
p=p(p.A), (13¢)
r=r(p,A). (13d)

A broad study of variations on this theme is in progress.'’
Analogs of detonations in a wide variety of materials can
be obtained by variations on these equations. For example,
we can add a viscous term to (13a), consider additional
chemical reactions by adding additional A’s (with a new rate
equation for each), and choose different forms for the
functions p and r. We shall not pursue any of this here, but
just stay with the simplest case, that is, the system (13) as
it stands.

Throughout, we restrict our discussion to well-behaved
equations of state, which we define as those satisfying the
conditions

P >0, pop>0, pr>0, (14)

that is, having fixed-A curves which have positive slope and
are concave upward in the p-p plane, and which do not cross
each other. The sound speed ¢ turns out to be

C= Py (15)

for a well-behaved equation of state, it increases with den-
sity. For purposes of illustration we take what we shall call
our standard equation of state

p=(Q1/2)(p+4gN)>,

c=p+gh, (16)

with positive constant g representing the heat of reaction.
(To preserve dimensional consistency in the analog we must
assign to ¢ the same dimensions as p, thatis ml=3.) For g
= 0 this reduces to the nonreactive case (7),

p =1/
c=p. (17

We restrict our discussion to reactions proceeding in the
forward direction only, so that the rate 7 is positive every-
where except in the equilibrium state A = 1, where it van-
ishes. We also consider only rates for which the reaction is
complete in finite time. Again for purposes of illustration
we define a standard rate

r=k(1 =12

with constant multiplier k.

The limitations of this analog are essentially the same as
those of the nonreactive one. A system with chemical re-
action has two entropy-producing processes: the chemical
reaction and shock jumps. But the effects of entropy pro-
duction remain sufficiently small that their absence in the
analog is not a serious defect.

(18)

III. NONREACTIVE FLOW

We now return to the nonreactive system (5a) and (5b)
or (6a) and (6b). In this section we use it for a brief intro-
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duction to hyperbolic partial differential equations and
nonreactive compressible fluid flow, the background needed
for our study of detonations in Secs. V and VI.

A. Characteristics

The nature of the solutions of a system of hyperbolic
partial differential equations, and also the role of the
boundary conditions in determining a particular solution,
is made clear by studying the characteristic curves, or
characteristics for short, of the system,2 !¢ A characteristic
is, roughly, a curve in the dependent-variable (here ¢-x)
space along which one of the equations of the system be-
comes an ordinary differential equation. For a system of n
equations there are n families of characteristic curves. Our
single Eq. (6a) has only one family of characteristics, easily
obtained by noticing that the left-hand side is the derivative
of p with respect to ¢ in the direction dx/dt = c. Along any
curve satisfying dx/dt = ¢, then, (6a) becomes the ordinary
differential equation dp/dt = 0. We have then the char-
acteristic form of this equation, usually written

dp _

i 0 (19)
on

dx

Prake (20)

The solutions of dx/dt = ¢ are the characteristics. Now the
first equation of the pair (19) and (20) states that p is
constant along each characteristic. Thus ¢(p) is also con-
stant on each characteristic. From the second equation we
then have that each characteristic is a straight line of slope
¢. The solution surface p(x,t) is thus a ruled surface whose
contour lines are the family of linear characteristics. The
x-t slope of the characteristics, here ¢, is called the char-
acteristic speed. It is easy to show, as may be seen by lin-
earizing the equations for small disturbances, that the
characteristic speed c is also the local sound speed.

A particular solution over some region of ¢-x space is
determined by specifying a boundary condition. This con-
sists of specified values of p at every point of a boundary arc,
such as arc AB of Fig. 1, which has nowhere the charac-
teristic direction dx/dt = ¢. The boundary condition de-
termines the solution everywhere in the band enclosed by
the characteristics through the endpoints of the boundary
arc. To see this, consider any point b (x;,¢5) on the bound-
ary arc, having pp as the specified value of p. From (20),
the characteristic through this point is

(21)

x = xp=c(pp)(t — tp),

Fig. 1. Solution region determined by a b
boundary arc. t
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Fig. 2. Rarefaction wave. (a) Boundary condition; (b) characteristic di-
agram: (c) profiles at the times indicated in (b).

and p has the constant value p, everywhere on this char-
acteristic. Repeating this process for each point of the
boundary arc, we see that the solution is determined ev-
erywhere in the band. Thus the value of p at each point of
the boundary arc is “propagated” out along the charac-
teristic through that point.

Throughout, we shall consider solutions only in the first
quadrant of the r-x plane. We also keep to a special choice
of the boundary arc: the union of the positive x and ¢ axes.
Along the x axis (the initial state) we will always specify
a constant state p = po. This leaves the ¢ axis as the inter-
esting part of the boundary arc. Along it we specify values
of p in the form of a boundary function p,(t).

B. Rarefaction waves

Let us consider the wave generated by a monotone de-
creasing boundary function p,(?) such as the decreasing
ramp function of Fig. 2(a),

pu(1) = po(l — 1), for 0 <1 =<1/2,
pu(t) = py, for t>1/2.

Such a wave is called a rarefaction wave.

The solution is divided into three parts by the head and
tail characteristics emanating from the slope discontinuities
in the boundary function, as shown in Fig. 2(b). The head
characteristic is

(22)

x = c(po)t. (23)

Ahead (to the right) of it, we have the initial constant state
p = po, propagated up from the constant initial state on the
X axis by characteristics parallel to the head characteristic.
The tail characteristic is

x=clp) - 1/2), (24)

originating at the point z = 1/2 on the ¢ axis, which is the
end of the ramp in pp(2). Behind (to the left of) it we have
the constant state p = p,. This is propagated to the right by
the characteristics that leave the ¢ axis from points above
t = 1/2. These characteristics are parallel to the tail char-
acteristic. »

Between the head and tail characteristics we have the
rarefaction wave, or rarefaction fan. It is easy to write this
part of the solution in parametric form. The convenient
parameter is the value of 7 betweent = Oand ¢ = 1/2 on the
t axis, which we call 7. To obtain the solution in parametric
form, we simply write down the solution on the character-
istic through a point x = 0, r = 7 for arbitrary 7. This is

p = ps(7) = po(l —7) (25a)

on
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x = c[pp(7)](t = 7). (25b)

For our standard nonreactive equation of state (17) with
¢ = p, we can eliminate 7 to obtain an explicit solution for
0(x,1). Solving (25b) for 7 and substituting for p,(7) from
(25a) gives

72— @+ 1)1+ (@ —x/po) = 0. (26)
The desired explicit solution is then, from (25a),
p(x.t) = poll — 7(x.1)], (27)

where 7(x,t) is the solution of the quadratic equation (26).
The wave gets longer and flatter as it runs, as indicated by
the successive profiles in Fig. 2(c).

The response to a negative step function in p is a par-
ticularly simple configuration called a centered rarefaction
wave. It may be obtained as the limit of the above solution
as the ramp interval goes to zero, but more easily by noting
that there is no longer any time scale in the problem. This
suggests looking for a self-similar solution, that is, one
having x/t as the single independent variable. Thus we
try

p(x.t) = p(x/t) (28)

in (6a). The result is immediate: either p = const or c(p) =
x/t. The complete solution for a negative step in p,(¢) from
podown to p; at ¢ = 0 is then

p = po, for x/t > c(po),
c(p) = x/t, for c(p;) < x/t < c(po),
p = p1, for x/t <c(p).

This solution, Fig. 3, has constant initial and final states as
before, but now all characteristics of the fan emanate from
the origin so that snapshots at different times are all iden-
tical provided we plot p against x/t. Note that for our
standard nonreactive equation of state for which ¢ = p, the

(29)

‘'state within the fan becomes p = x/t.

C. Shocks

If we take pp(7) increasing with time instead of de-
creasing, the characteristics are converging instead of di-
verging and we have a compression wave, Fig. 4. This wave
becomes steeper and shorter with time instead of flatter and
longer like the rarefaction wave. It can be shown that the
earliest crossing of an adjacent pair of characteristics occurs
in the interior of the quadrant, that is, at some nonzero
positive ¢ and x. After this time of first crossing, the wave
profile will contain a growing triple-valued region, like an
ocean wave breaking. In most applications, and certainly
in ours, this is physically inadmissible, and we replace the
triple-valued solution by a jump discontinuity, or shock, as

' Pf

x x/t
(a) (b}

Fig. 3. Centered rarefaction wave. (a) Characteristic diagram; (b) pro-
file.
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Fig. 4. Shock formation. (a) Characteristic diagram; (b) profiles.

indicated by the vertical segments in Fig. 4(b). A qualitative
discussion of the process of shock formation may be found
in Ref. 9. We shall be more interested here in the properties
of the shock after it is formed.

The motion of the shock is governed by an algebraic
relation. Although this relation can be derived directly from
the differential equation (6a), it is simpler to appeal to the
original physical mass-conservation requirement at the
beginning of Sec. I11. Figure 5 shows a profile and p-p di-
agram. Denote the shock velocity by D, the state ahead
(zero in the figure) by subscript zero, and the state behind
(one in the figure) by a plain symbol. The mass flux into the
shock ahead is po(D — ug) and that out behind is p(D — u).
Equating these and solving for D gives

D = (pyu) — poto)/(p1 — po) (30)

or
1 — po= D(p1 — po). 31

The construction for the shock state in the p-p plane is
as follows: The state must of course lie on the state curve
p(p). For a shock of specified velocity D, it must also lie on
the straight line (31), which we call the Rayleigh line after
the original (see Appendix A). The upper intersection 1 of
these two curves in Fig. 5(b) is the shock state for the given
value of D.

In Sec. HI B we found that the response to a negative step
function on the boundary is a centered rarefaction wave.
What is the counterpart here, that is, the response to a
positive step function, say p;, stepping from po up to p; at
t = 0? It is the flat-topped shock shown in Fig. 5, a jump
from pg to p,, followed by the constant state p = p;. The
shock velocity is given by (31), with p; = p(p)).

How is the shock affected by the flow around it? Let us
compare the shock speed with the sound speeds before and
behind, that is, at states 0 and 1 of Fig. 5. Recall that the
shock speed is the slope of the Rayleigh line, and the sound
speed is the slope of the state curve. For a well-behaved

SHOCK
] STATE
RAYLEIGH
P o, P LINE
STATE
CURVE
o
o
X 4
(a) (b

Fig. 5. (a) Shock profile; (b) Rayleigh line.
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SHOCK HOCK

X X

(a) (b)

Fig. 6. Effect of neighboring flow on a shock. (a) The shock speed lies
between the characteristic speeds ahead and behind. (b) Centered rare-
faction wave overtaking and degrading a shock.

(concave upward) equation of state, we see by comparing
these slopes in Fig. 5(b) that the sound speed behind (point
1) is greater than the shock speed, and that the sound speed
ahead (point 0) is less than the shock speed. The shock is
thus overtaken by characteristics from behind and overtakes
characteristics ahead as indicated in Fig. 6(a). It is therefore
affected by what is going on both ahead and behind. The
standard equation of state (7) gives a particularly simple
case. For it, the shock velocity is, from (31),

D = (1/2)(p) + po) = (1/2){(c1 + co), (32)

that is, the shock speed is the mean of the sound speeds
before and behind.

As an example of how the flow behind affects a shock,
consider the response to a boundary function p,(¢) con-
sisting of a square pulse: a positive step generating a flat-
topped shock, followed at a later time by a negative step
generating a centered rarefaction, as shown in Fig. 6(b).
The head of the rarefaction moves at the sound speed behind
the shock. Because this sound speed is greater than the
shock speed, the rarefaction wave overtakes the shock. As
the process continues, characteristics carrying successively
lower values of p overtake the shock and reduce its strength.
Thus a shock is vulnerable to overtake and degradation by
a following rarefaction wave.

IV. REACTIVE FLOW

In this section we follow the outline of Sec. 111, limiting
ourselves to stating those properties of reactive flow (as they
appear in the analog) that are needed for the discussion of
detonations to follow. From here on we will always take the
constant initial state p = pg, A = Ag = 0. The only shocks
we consider are at the head of a wave, so that the state ahead
of the shock is always the initial state.

A. Characteristics

There are two families of characteristics: dx/dt = ¢ and
dx/dt = 0, where ¢ = p,. As before, the characteristic speed
is the local sound speed. These two families of character-
istics represent right-going acoustic signals and (roughly)
particle paths, respectively. We shall be concerned here only
with the first family.

B. Rarefaction waves

We will not need to consider rarefaction waves in which
reaction occurs. However, we will need a rarefaction wave
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similar to the nonreactive centered wave (29), but running
into completely reacted material (A = 1) behind a detona-
tion wave. If we fix A at 1, the reactive equations (13a)-
(13d) with the standard equation of state (16) become just
the nonreactive set (6a) and (6b) with equation of state p
= (1/2)(p + g)%, ¢ = p + q. We have then just a nonreactive
centered wave with this equation of state. Its head propa-
gates at

% = ¢(po) = po t 4. (33a)
In the fan we have x/t = c(p), or
p=x/t —q. (33b)

C. Shocks

The Rayleigh-line relation (31) applies as before. We
need to specify in addition how A\ changes across the shock.
Because the shock jump is instantaneous while the reaction
rate is finite, we require that A be unchanged through the
shock, that is, that A; = Ag. The shock state will thus be on
the intersection of the Rayleigh line and the A = Mg state
curve.

As in the nonreactive case, shocks overtake character-
istics ahead and are overtaken by characteristics from be-
hind. The analagous question of the overtaking of a deto-
nation wave by characteristics from behind is taken up in
Sec. VI

V. DETONATION

In this section we return to the physical system for a
qualitative description of the phenomenon of detonation.
A detonation'®-20 js a shock wave driven by a closely fol-
lowing chemical reaction. A momentary impulse applied
at the edge of a nonreactive material results in a shock that
decays in the manner depicted in Fig. 6(b). A similar im-
pulse applied to an explosive will, if strong enough, initiate
a detonation wave. Here the heating and compression of the
shock jump trigger an exothermic chemical reaction, which
in turn supplies the energy to sustain the shock. An explo-
sive, then, is a material that is potentially capable of strongly
exothermic reaction, but is normally resting quietly in a
state of metastable equilibrium. A stoichiometric mixture
of hydrogen and oxygen gas at room temperature is an ex-
ample. At this temperature, the true equilibrium state of
the mixture is essentially pure water, but in the absence of
strong perturbations, the reaction rate is so slow that it is,
for all practical purposes, nonexistent. Reaction can,
however, be triggered by a suitable stimulus such as a spark,
which initiates a reaction wave that spreads through the
material.

Depending on the mode and strength of initiation, the
reaction wave can be one of two types: either a deflagration
(flame) or a detonation. We consider here only one-di-
mensional waves. We can think of them as generated in an
idealized experiment as follows. Confine the explosive in
a long rigid tube of large enough diameter that edge effects
can be neglected. Close one end of the tube by either a fixed
end plate or a moveable piston. To generate a deflagration,
use the fixed end plate, heating it suddenly and uniformly
over its area. To generate a detonation, use the piston, giving
it a strong blow.
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A deflagration wave moves at slow subsonic speed—a few
meters per second in gases. Although the pressure drops
slightly through the wave, momentum changes are small;
the important processes are diffusion, heat conduction, and
viscosity. If the deflagration wave is confined, as by leaving
the end plate in place after ignition in the above experiment,
it will eventually change into detonation. We shall say no
more here about deflagrations.

A detonation is very different. It runs at supersonic
speed—1000 or 2000 m/sec in gases. The pressure (in
gases) is on the order of 20 times the initial pressure, and
the temperature is several thousand degrees. Momentum
changes are controlling, because the reaction is over too
quickly for other processes to have much effect; the reacting
material is inertially confined in a thin layer behind the
shock. Both detonation and deflagration waves convert
chemical bond energy to translational energy. In a deto-
nation wave, energy conversion is very rapid because the
propagation velocity is so high. A 10-cm? detonation front
in a solid explosive like TNT converts energy at a rate of
10" W, a figure comparable to the total electric generating
capacity of the U.S.

The structure of a steady detonation wave is shown in Fig.
7. This structure, the so-called ZND model,'® was proposed
independently in the early 1940’s by Zeldovich in Russia,
von Neumann in the U.S., and Doering in Germany. The
leading element is a shock, which instantaneously heats the
material and triggers the reaction. Immediately behind the
shock is the relatively short reaction zone in which the re-
action proceeds to completion. The reaction zone is steady
in the coordinate frame attached to the shock. Following
the steady reaction zone is a time-dependent rarefaction
wave that reduces the pressure down to the low value ordi-
narily obtaining at the rear boundary.

In Sec. VI we write down and solve the equations (in the
analog) for a steady detonation wave.

VI. STEADY SOLUTIONS

We pose the following problem: given a constant value
of py at the rear of the wave, find a steady detonation so-
lution of the ZND type, that is, one consisting of a shock
and its attached steady reaction zone, both moving with a
constant velocity D, and followed by a possibly unsteady
nonreactive flow. We call the shock and its attached reac-
tion zone at the front the steady solution, the complete-
rcaction state at the end of the reaction zone the final state,

UNSTEADY STEADY
FOLLOWING REACTION
FLOW ZONE
(RAREFACTION)

PR S

X

Fig. 7. ZND model of a detonation.
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the nonreactive flow in the rear the following flow, and the
constant propagation velocity D the detonation velocity.

The plan of attack is to divide the problem into two parts,
addressing first the front part of the flow and then the back
part. We call these the velocity problem and the boundary
problem, respectively. .

The velocity problem is the determination of all possible
candidates for the steady part of the flow—the shock and
its attached reaction zone—disregarding the requirements
imposed by the rear boundary condition. As we shall shortly
see, the equations governing this part of the flow contain
the detonation velocity D as a parameter. For the complete
problem, D is uniquely determined by the specified rear
boundary condition, but for now we treat it as a free pa-
rameter. Choosing a given value of D (within a certain
range) determines a particular steady solution. Varying D
over the allowed range, we obtain the complete one-pa-
rameter family of all possible steady solutions. Of particular
interest in each of these solutions is the final state to which
the following flow must be joined.

The boundary problem is the choice of the appropriate
steady solution from this family, plus the determination of
the foilowing flow such that the specified boundary condi-
tion is satisfied. This is essentially a two-point boundary
value problem: the following flow is required to match the
given value of p, on the left, and the final state of the se-
lected steady solution on the right. As we shall see, this is
not as difficult as it sounds.

A. Steady equations

The equations for a solution steady in a frame moving
with a given constant velocity D are obtained in the usual
way—Dby first transforming the time-dependent equations
to this frame and then setting the time derivatives to
zero.

Let £ denote position in the new steady frame. The
transformation is

(1) =x — Dt (34)
The partial derivatives transform as follows:
0 . |0 9
(a)x - (O)‘c 1 + (at)x’
e} o)
—| =% |- 35
(ax), T (ax), (33)

Substituting X, = —D and X, = 1| from (34), this trans-,

formation becomes
. e 0 o)
2| = — + =],
[2).= -2 (53 (51,
o) (o
ox|: ox)e

Under this transformation the governing equations (13a)
and (13b) become, in the new frame

(36)

—Dpz+ p, + p: =0,
'—D)\g + >\, =r. (37)

For a steady solution, the dependent variables depend only
on £ and the time derivatives vanish. We have then the
following pair of ordinary differential equations
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dp Ddp _

PN TS (382)
d\ -r
D (38b)

The first of these integrates immediately to
p(p.A) —p1=D(p — py), (39)

where the subscript one denotes an arbitrary point of the
solution chosen as the initial point for the integration, and
we have indicated explicitly the dependence of p on p and
A through the equation of state (13c). For a given value of
D, this solution (39) gives the dependence of p on A
throughout the steady solution if any one point (point 1) is
given. Note that its form is similar to that of the Ray-
leigh-line relation (31).

We can eliminate the unknown initial point 1 as follows:
we take it to be the point immediately behind the shock,
which we can then express in terms of the initial state via
the Rayleigh-line relation (31),

P1— po= D(p1 — po). 31)

If we solve (31) for p, and substitute in (39), we find that
p1 also drops out and we obtain an implicit expression for
the steady solution p(A;D) having A as the independent
variable and D as the only parameter

p(p.N) = po = D(p = po). (40)

This equation states that in the p-p plane the solution lies
entirely on the Rayleigh line for the given D.

We now have the steady solution with the degree of re-
action A as the independent variable. To get it as a function
of x we integrate the rate equation (38b). With p(A) known
this becomes a single ordinary differential equation for
A(x:D),

dr _ —rlp(A).A]
dx D ’
with the right-hand side a function of A alone.

It turns out that we have no need of the £ dependence

other than to actually exhibit the spatial profile. The im-

portant results require only the A dependence and are in-
dependent of the choice of rate function.

(41)

B. Velocity problem

We seek the complete one-parameter (D) family of so-
lutions of (40) encompassing the entire reaction zone. Each
solution must satisfy two conditions: (i) it must lie on the
Rayleigh line in the p-p plane for the given D, and (ii) its
final state must lie on the complete-reaction (A = 1) state
curve.

Figure 8 shows three constant-X state curves. Recall the
“well-behaved” properties given at the end of Sec. II: each
fixed-A curve has positive slope and is concave upward, and
the curves are displaced upward as A increases, with no one
crossing another. Now, the possible final states are the in-
tersections of some Rayleigh line with the A = 1 state curve.
Looking at the Rayleigh lines of Fig. 8, we see that there are
zero, one, or two such intersections according as D is less
than, equal to, or greater than the value at which the two
curves are tangent. Thus the tangent value of D is the
minimum possible steady propagation velocity.?! In the
standard terminology, the tangent velocity is called the
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Fig. 8. The p-p diagram for a
steady detonation.

Chapman-Jouguet (CJ) velocity and the corresponding
final state, the tangent point, the CJ state (point). We use
subscript j to denote CJ quantities.

Of the two intersections for D > D;, the lower one is
readily eliminated by considering the nature of the solution.
Consider the sequence of states in the p-p plane, Fig. 8, as
the wave sweeps over a fixed station. The shock raises the
state instantaneously from the initial state 0 to the shock
state 1, both on the A = 0 curve. As reaction proceeds, the
state point moves in the direction of increasing A, that is,
down the Rayleigh line (as shown by the arrow in Fig. 8).
1t stops at the upper intersection 2, where the reaction is
complete at A = 1. Thus the upper intersection, and not the
lower, is the final state actually reached. For D = D, the
two intersections have coalesced into the CJ point, which
is the final state for this case.

We have now determined the general nature of the steady
solutions and determined their most important property:
that there is a minimum possible propagation velocity, the
tangent, or CJ, value. It remains to examine in more detail
the properties of the final state, to which we must join the
following nonreactive flow.

For the discussion of the boundary problem to follow, the
important property is the ratio of ¢ to D in the final state.
Recall the nonreactive case discussed at the end of Sec.
111 C: Behind a shock the sound speed ¢ is always greater
than the shock speed, so rarefaction waves coming from
behind always overtake and degrade the shock. Similar
considerations arise here, and we need to know this same
ratio in the final state at the end of the reaction zone. Recall
that the sound speed is just p,, the slope of a fixed-A curve
in the p-p plane, while the steady-wave velocity D is the
slope of the Rayleigh line. From Fig. 8 we see that the
fixed-A curve is the steeper of the two for all values of D of
interest except the tangent value D = D;, where their slopes
are equal. Thus we have ¢ > D for D > Dj, and ¢ = D for
D = D;. A following rarefaction wave therefore travels at
the same speed as the reaction zone for D = D; but will
overtake it for all larger D.

C. Boundary problem

With the above family of steady solutions at our dispos-
al, we want to choose one and join to it a suitable following
flow so that the entire solution is consistent with the speci-
fied value of pp. We do this for all values of p,, beginning
with an arbitrarily large value and working down.

Denote by ps(D) the final-state value of p for the given
D, and by p; the CJ value of ps that is, p; = pr(D;), the
value of p at the CJ point. There are two cases: p; = p; and
Py < Py
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Aslong as p, = p;, we have a very simple solution: that
value of D for which py is equal to ps. The following flow
is then just the constant-state p = py = ps, and A = 1. This
is called an overdriven detonation; because ps(D) is a
monotone increasing function, the harder the “push” (that
is, the greater the value of p,) the faster it goes. In this re-
spect the overdriven detonation is like a nonreactive
shock.

For p, < p;, we cannot have such a simple solution, for
p; i1s the minimum possible value of p for any steady so-
lution. We tentatively choose the minimum propagation
velocity D = D;. We must then choose a following flow
which reduces the density from p; at the final state to the
smaller value p, at the boundary. From the discussion of
Secs. 111 and 1V, the obvious choice is a rarefaction wave
(with A = 1 throughout). We can place the head of the
rarefaction wave at the final state of the reaction zone,
because for D = D; we have ¢/D = | in the final state and
the two waves propagate at the same velocity. This is the
CJ, or self-sustaining, or unsupported, detonation. It runs
at CJ velocity regardless of the value of p, (as long as it is
less than p;). The state at the tail of the following rarefac-
tion is of course fixed by the specified value of py, as in Sec.
I1.

Had we chosen any value of D larger than D; here, the
rarefaction wave required to match the rear boundary
would overtake the reaction zone (because ¢ is greater than
D in its final state as shown above). The consequent deg-
radation of the steady solution is similar to that of a shock
followed by a rarefaction wave, described in Sec. [11C. The
flow eventually approaches the CJ solution just described,
with D = D;.

In practice, detonations run so fast that the unsupported,
or CJ, detonation is the usual case. The detonation front,
consisting of a shock followed by a short reaction zone, runs
at the minimum propagation velocity. This front, moving
at supersonic speed, propagates without any help from be-
hind, being driven by the energy of chemical reaction. The
large-amplitude rarefaction wave which follows the front
effectively isolates it from small-amplitude disturbances
from the rear. By pushing very hard, that is, by giving a
following piston a very high velocity, we can overdrive the
detonation, raising both its pressure and velocity. The ov-
erdriven detonation is followed by a constant state and is,
like a nonreactive shock, sensitive to disturbances from
behind.

D. Example

We calculate steady solutions for our standard equa-
tions of state (16) and rate (18). To simplify the equations,
we choose po = 0 as the initial state. (This may be regarded
as the limit of large heat of formation, with ¢q/pg ap-
proaching infinity.) Additional simplification results from
taking ¢ = p + g\ instead of p as the independent variable.
Substituting the equation of state (16) into the Rayleigh-
line relation (40) for the steady solution gives for ¢(\;D)

¢/D=1+(1-Na)/2 (42a)
a=D/2q. (42b)

This is the solution of a quadratic equation; we have sup-
pressed the negative sign corresponding to the lower inter-
section of Fig. 8. The tangency condition for the CJ deto-
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(a) (b)
Fig. 9. Steady detonations for pg = 0, g = 1. Here S is the shock, F the
linal state {end of the reaction zone), and t* the reaction time. (a) CJ
detonation (unsupported), @ = D/D; = 1. T is the tail of the following
rarclaction wave. (b) Overdriven detonation, o = D/D; = 1.25.

nation is that the radical vanish. This gives for the CJ ve-
locity D; = 2¢q. We can thus write the coefficient a in (42b)
as & = D/D;; we call « the degree of overdrive. Note that
in the shock state (A = 0) the value of the quantity ¢/D is
always 2, and that it decreases through the reaction zone.
At X = 1 itis greater than 1 for D > D; and equal to 1 for
D = Dy, as it should be.

For the £ dependence, integration of the rate equation
(38b) with our standard rate function (18) gives

A=1—-(1-17)2 (43a)
T = —%/Dr*, (43b)
r*=2/k, (43c)

where t* is the reaction time and Dr* the reaction-zone
length. Here x is positive in the steady frame with origin £
= ( at the shock. The variable 7 is the time (in units of #*)
for an observer watching the wave sweep past a fixed posi-
tion in the original frame, with 7 = 0 at the moment the
shock arrives. Substituting (43a) for A(X) into (42a) for
c()) gives for c(%),

¢/D=1+[1-a+a(l —7)2] /2
For D = Dy, this simplifies to
¢/D=2-1. (45)

We remark that de/dt and dp/dr at the end of the reaction
zone are —1 for D = Dj; and O for all D > D;.

Profiles and 7-x diagrams for a CJ (@ = 1) and an over-
driven (« = 1.25) detonation are shown in Figs. 9 and 10.
These are calculated from (44) with ¢ = 1; they are dis-
played in the original frame (in which the shock moves at
velocity D) with time and space units t* and Dr*.

For the CJ detonation, Figs. 9(a) and 10(a), we have
chosen a boundary density p, (for ¢/t* > 1) of zero, and a
following flow consisting of a centered rarefaction wave,
with center at t = 0, x = 1 so that its head coincides with
the path F of the final state. The vertical extent of the re-
action zone relative to that of the following rarefaction is
larger than that usually seen in the physical system, which
is more like Fig. 8.

The overdriven detonation, Figs. 9(b) and 10(b), requires
a following constant state with p (and thus p;) equal to the
final-state value, which is 2.168 for the degree of overdrive
chosen.

(44)

APPENDIX: PHYSICAL SYSTEM

The standard equations for inviscid, compressible flow
with chemical reaction are the so-called Euler equations,
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with chemical reaction added. In one dimension and for a
system with a single chemical reaction, these are!8:19

p+pu,=90 (Ala)
u+uovpy,=0 (Alb)
é+po=0 (Alc)

A=r (Ald)
p=pp.el) (Ale)
r=r(peN). (Alf)

Here p, u, p, and e are the density, particle velocity, pres-
sure, and specific internal energy, respectively; v (= 1/p)
is the specific volume; and A is the reaction progress vari-
able, whose value determines the chemical composition of
the system. The dot denotes a material derivative, that is,
the total time derivative of the state of a fluid element. In
t-x space it is the derivative along a particle path (convec-
tive derivative) and is thus, for any function f(x,?),

=5+ uf.. (A2)

The first three equations express the conservation of
mass, momentum, and energy, respectively. The fourth
describes the progress of the reaction. To complete the de-
scription of a particular system we must specify the two
constitutive relations (material-response functions): the
equation of state (Ale) and the reaction rate (Alf). The
equation of state gives the pressure p as a function of the
local thermodynamic state (p,e,\), that is, as a function of
density, energy, and composition. Similarly, the rate
function gives the reaction rate r as a function of the same
local state.22

This system of equations (Ala)-(A1f) is hyperbolic; that
is, its solutions take the form of waves traveling through the
material. These may contain moving jump discontinuities,
or shocks. A shock is described by a set of algebraic rela-
tions, derivable from the differential equations (Ala)-
(A1f), called the Rankine-Hugoniot conditions.!® These
relate the states immediately before the behind a shock to
its propagation or shock velocity D. In a form commonly
used, but not in precise one-one correspondence with
(Ala)-(A1f), these relations are

u?= (p — po)(vo — v), (A3a)
p&D? = (p — po)/(vo — v), (A3b)
e = eo = (1/2)(p + po)/(vo — v), (A3c)
>\ = )\0. (A3d)

s s

oO | 2 g 00 { 2 ;

x/Dt* x/Dt*
(a) (b)

Fig. 10. r-x diagrams for the detonations of Fig. 10. The profiles of Fig.
10 are at the times indicated by the dashed lines.
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Fig. 11. Shock equations in the p-v plane. P

Here the subscript 0 denotes the state ahead of the shock,
or initial state, and a symbol without a subscript the state
behind, or shocked state. The first two equations together
cxpress the conservation of mass and momentum, and the
third gives the conservation of energy. The fourth states that
the composition does not change through the shock (because
the shock jump is instantaneous while the reaction rate is
finite). The most used of these relations are (A3b) and
(A3c); they are customarily diagrammed in the p-v plane,
Fig. 11, for a given initial state. The Rayleigh line (A3b)
is a straight line whose slope is proportional to the square
of the shock velocity D. Substitution of the equation of state
e(p.p,\) into (A3c) [with the use of (A3d)] gives the Hu-
goniot curve in the p-v plane, which is the locus of all pos-
sible shocked states, from a given initial state (po,ve, Ao),
for the given material. For a given shock velocity D, the
shocked state, such as (py,v;) in Fig. 11, is the intersection
of the Rayleigh line for that D with the Hugoniot curve. The
particle velocity in the shocked state is then given by
(A3a).
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