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Fig. 11.6. Electrical circuit of a non-linear ‘relaxa-
tion oscillator’. A capacitance C is charged through
a resistance R to a potential V, <E, at which the
gas-filled valve strikes and rapidly discharges the
condenser to an extinction potential V., when the
valve ceases to conduct and the cycle is repeated

The capacitance charges to the potential V; in a time 7 so that

V,=E—igRe """
giving
V.—V. = .['OR(C_!/'Rcfe_{HT]/RC)
— EOR e—!/RC[l _e—‘r/RC]
=(E=V.)[1-e "]
giving
-7/RC _ E VS
E-V,
or

T= RC[loge (g: “ie)]

The period of oscillation is therefore directly proportional to the charging timek

constant RC.

A more sophisticated circuit produces a linear charging system with a very

short discharge time so that the exponential voltage output becomes linear and

gives a ‘sawtooth’ waveform. From Chapter 9 we know that this periodic
function contains many harmonics. A sawtooth voltage output applied to the |
time base of an oscilloscope produces a linear sweep of the spot across the tube.
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Non-linear Effects in Acoustic Waves

The linearity of the longitudinal acoustic waves discussed in Chapter 5 required
the assumption of a constant bulk modulus

If the amplitude of the sound wave is too large this assumption is no longer valid
and the wave propagation assumes a new form. A given mass of gas undergoing
an adiabatic change obeys the relation

P_ (K@) o [i._] !
Py, \V Vo(1+8)

in the notation of Chapter 5, so that

2

aP _ap —(y+19' M
— =t —_VP.(1+ y+1)
dx dx Pl 8) 5)7
since & = an/dx.
Since (1+8)(1+s)=1, we may write
3 &
L P 1+5)7
ox ox
and from Newton’s second law we have
p__ o
ax Po ar’
so that /
6211 & P,
L0 21+ =D where =20
at dx Po

Physically this implies that the local velocity of sound, co(1+5) V2,

depends upon the condensation s, so that in a finite amplitude sound wave
regions of higher density and pressure will have a greater sound velocity, and
local disturbances in these parts of the wave will overtake those where the
values of density pressure and temperature are lower.

A single sine wave of high amplitude can be formed by a close fitting piston in
a tube which is pushed forward rapidly and then returned to its original
position. Fig. 11.7a shows the original shape of such a wave and 11.7b shows
the distortion which follows as it propagates down the tube. If the distortion
continued the wave form would eventually appear as in fig. 11.7c, where
analytical solutions for pressure, density and temperature would be mul-
tivalued, as in the case of the non-linear oscillator of fig. 11.3c. Before this
situation is reached, however, the wave form stabilizes into that of fig. 11.7d,
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Fig. 11.7. The local sound velocity in a high amplitude acoustic

wave (a) is pressure and density dependent. The wave distorts

with time (b) as the crest overtakes the lower density regions. The

extreme situation of (c) is prevented by entropy-producing

mechanisms and the wave stabilises to an N type shock-wave (d)
with a sharp leading edge

where at the vertical ‘shock front’ the rapid changes of particle density, velocity
and temperature produce the dissipating processes of diffusion, viscosity and
thermal conductivity. The velocity of this ‘shock front’ is always greater than
the velocity of sound in the gas into which it is moving, and across the ‘shock
front’ there is always an increase in entropy. The competing effects of dissipa-

tion and non-linearity produce a stable front as long as the wave retains
sufficient energy. The N-type wave of fig. 11.7d occurs naturally in explosions
(in spherical dimensions) where a blast is often followed by a rarefaction.
The growth of a shock front may also be seen as an extension of the Doppler
effect (page 135), where the velocity of the moving source is now greater than
that of the signal. In fig. 11.8a as an aircraft moves from S to §'in a time ¢ the air
around it is displaced and the disturbance moves away with the local velocity of

sound vs. The circles show the positions at time ¢ of the sound wave fronts

generated at various points along the path of the aircraft but if the speed of the

aircraft u is greater than the velocity of sound vs regions of high density and ?'
pressure will develop, notably at the edges of the aircraft structure and along
" the conical surface tangent to the successive wave fronts which are generated at

a speed greater than sound and which build up to a high amplitude to form a
shock. The cone, whose axis is the aircraft path, has a half angle « where

. Vg
SiIn @ =—
u

It is known as the ‘Mach Cone’ and when it reaches the ground a ‘supersonic :

bang’ is heard.

The growth of the shock at the surface of the cone may be seen by i
considering the sound waves in fig. 11.8b generated at points A (time £4) andB
(time t) along the path of the aircraft, which travels the distance AB = x = uAt
in the time interval At=tg—ta. The sound waves from A will travel the =

distance r, to reach the point P at a time

o
\ t():tA‘*'*'*
Us
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Fig. 11.8. (a) The circles are the wave fronts generated at

points S along the path of the aircraft, velocity u > v, the

velocity of sound. Wave fronts superpose on the surface of the

Mach Cone (typical point P) of half angle a =sin ' v,/u to

form a shock front. (b) At point P sound waves arrive simul-

taneously from positions A and B along the aircraft path when
(u/vs)cos 8 =1.(8+a =90°

Those from B will travel the distance r; to P to ar\igat a time

'
Hh=tg+—
Us

If x is small relative to ry and ry, we see that

ri—ro=x cos 0 =ultcos @

so the time interval

-
h—10=tB—tA+(l ro)
Us ‘
At 0
=At—u cos :At(l_ucosﬂ)
Us Ug

For the aircraft speed u <uvs, 1, —1I, is always positive and the sound waves
arrive at P in the order in which they were generated.
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For u > vg this time sequence depends on 6 and when

u
—cos =1
Us
t; = to and the sound waves arrive simultaneously at P to build up a shock.
Now the angles @ and a are complementary so the condition

Usg
cos 0 =—
u

defines
. Ug
sina =—
u

so that all points P lie on the surface of the Mach Cone.

A similar situation may arise when a charged particle g emitting electro-
magnetic waves moves in a medium of refractive index greater than unity witha
velocity v, which may be greater than that of the phase velocity v of the
electromagnetic waves in the medium (v <c). A Mach Cone for electromag-
netic waves is formed with a half angle & where

, v
sina=—
Yq

and the resulting ‘shock wave’ is called Cerenkov radiation. Measuring the

effective direction of propagation of the Cerenkov radiation is one way of
finding the velocity of the charged particle.

Shock Front Thickness

The extent of the region over which the gas properties change, the shock front
thickness, may be only a few mean free paths in a monatomic gas because only a

“few collisions between atoms are necessary to exchange the energy required to
raise them from the equilibrium conditions ahead of the shock to those behind
it. In a polyatomic gas the collisions are effective in producing a rapid increase
in translational and rotational mode energies, but vibrational modes take much
longer to reach their new equilibrium, so that the shock front thickness is very
much greater.

Within the shock front thickness the state of the gas is not easily found, but
the state of the gas on one side of the shock may be calculated from the state of
the gas on the other side by means of the conservation equations of mass,
momentum and energy. '

Equations of Conservation

In a laboratory, shock waves are produced in a tube which is divided by a
diaphragm into a short high-pressure section and a much longer low-pressure
section. When the diaphragm bursts the expanding high pressure gas behaves
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Fig. 11.9. The pressure ‘step profile’ of a shock
wave developed in a shock tube is shown by the
dotted line. The plane cross-sections at A and B
remain fixed with respect to the observer O
moving with the shock front at velocity u; into
unshocked gas at rest of pressure p,; and density
p1. The shocked gas has a pressure p,, a density
p2 and a velocity u, with a relative velocity
Uy = u; — u with respect to the shock front. The
states of the gas at A and B are related by the
conservation equations of mass, momentum
and energy across the shock front. Experimen-
tal measurement of the shock velocity u; is
sufficient to determine the unknown parameters
if the stationary gas parameters are known

as a very fast low-interia piston which compresses the low pressure gas on the
other side of the diaphragm and drives a shock wave down the tube. The profile
of this shock wave is the step function shown as the dotted line in fig. 11.9, and
the gas into which the shock is propagating is considered to be at rest. This
simplifies the analysis, for we can consider the situation in fig. 11.9 as it appears
to an observer O travelling with the shock front velocity u; into the stationary
gas. The shock front is located within the region bounded by the surfaces A and
B of unit area, each of which remains fixed with respect to the observer. The
stationary gas which moves through the shock front frf'om surface B acquires a
flow velocity u <u; and a velocity relative to the shock front of u,=u;—u,
From the observer’s viewpoint the quantity of gas flowing into unit area of the
region AB per unit time is p; u;, where p; is the density of the gas ahead of the
shock. The quantity leaving unit area of AB per unit time is p, (1 — u) = paUa,
where p, is the density of the shocked gas.

Conservation of mass yields p, 4, = p,u, = m (a constant mass). The force per
unit area acting across the region AB is p, — p;, which equals the rate of change
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of momentum of the gas within the unit element, which is m(u; —us). The
conservation of momentum is therefore given by

p1+prut = patpais.

The work done on unit area of the region per unit time is p,u; — p2us, and this
equals the rate of increase of the kinetic and internal energy of the gas passing
through unit area of the shock wave.
The difference
P P2
g —ppp="—m——m
P1 P2
so that if the internal energy per unit mass of the gas is written e(p, p), then the
equation of conservation of energy per unit mass becomes
%u? +e,+—= %u§+ez+&
P P2
where for an ideal gas p/p =RT and e =c,T=(1/y—1)p/p, where T is the
absolute temperature, c, is the specific heat per gram at constant volume and
¥ = ¢,/ ¢,» Where ¢, is the specific heat per gram at constant pressure.
These three conservation equations

Pl =pala=m (mass)
pr+piui = py+pauis (momentum)
and
%uf+el+ﬂt%u§+e2+& (energy)
P P2

together with the internal energy relation e(p, p) completely define the proper-
ties of an ideal gas behind a shock wave in terms of the stationary gas ahead
of it.

In an experiment the properties of the gas ahead of the shock are usually
known, leaving five unknowns in the four equations, which are the shock front
velocity uy, the density of the shocked gas p,, the relative flow velocity behind
the shock us, the shocked gas pressure p, and its internal energy e;. In practice
the shock front velocity u; is measured and the other four properties may then
be calculated.

Mach Number

A significant parameter in shock wave theory is the Mach number. It is a local
parameter defined as the ratio of the flow velocity to the local velocity of sound.
The Mach number of the shock front is therefore M; = u;/c;, where u, is the
velocity of the shock front propagating into a gas whose velocity of sound is ¢;.
The Mach number of the gas flow behind the shock front is defined as
M; = u/c,, where u is the flow velocity of the gas behind the shock front
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(u <uy) and c; is the local velocity of sound behind the shock front. There is
always an increase of temperature across the shock front, so that c;> ¢, and
M, > M;. The physical significance of the Mach number is seen by writing
M?=u’/c? which indicates the ratio of the kinetic flow energy, 21> per mole,
to the thermal energy, ¢’ =y RT per mole. The higher the proportion of the
totalbgas energy to be found as kinetic energy of flow the greater is the Mach
number.

Ratios of Gas Properties Across a Shock Front

A shock wave may be defined in terms of the shock Mach number M,, the
density or compression ratio across the shock front 8 = p,/p;, the temperature
ratio across the shock T,/T; and the compression ratio or shock strength
y=p2/pr. ‘

Given the shock strength, y = p,/p;, the conservation equations are easily
solved to yield

M=t (22

(s3] (1+Of)
where
v—1
a=—
v+1
p=f2_2ty
pr l+ay
and
T, _ (1+ay) \
T, y a+ty \

Alternatively these may be written in terms of the experimentally measured
parameter M; as

B2y MA1+a)-a
P1

p2_,__ M

P1 1—a+aM;

and

T, _[a(Mi— D+ MiJla(Ms—1)41]
T, M,

Eor weak shocks (where p,/p, is just greater than 1) 8, T,/ T, and M, are also
just greater than unity, and the shock wave moves with the speed of sound.

Strong Shocks
The ratio p,/p, » 1 defines a strong shock, in which case
Mi N (y+1) y

2y
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and
b
;o Vvl
a limit of 6 for air and 4 for a monatomic gas for a constant . The flow velocity
2u,

uzul—uz—)

(y+1)
and the temperature ratio

C1

The temperature increase across strong shocks is of great experimental inter-
est. The physical reason for this increase may be seen by rewriting the equation
of energy conservation as i+ h = 1u2+ h,, where h = (e+p/p) is the total
heat energy or enthalpy per unit mass. For strong shocks h, > h, of the cold
stationary gas and u; » u, so that the energy equation reduces to hzzéulz,
which states that the relative kinetic energy of a stationary gas element just
ahead of the shock front is converted into thermal energy when the shock wave
moves over that element. The energy of the gas which has been subjected to a
very strong shock wave is almost equally divided between its kineticenergy and
its thermal or internal energy. This may be shown by considering the initial
values of the internal energy e, and pressure p; of the cold stationary gas to be
negligible quantities in the conservation equations, giving the kinetic energy
per unit mass behind the shock as

1.2_1 2
su"=2(u—ux)" = ez

the internal energy per unit mass of the shocked gas.

In principle, the temperature behind very strong shock waves should reach
millions of degrees. In practice, real gas effects prevent this. In a monatomic gas
high translational energies increase the temperature until ionization occurs and
this process then absorbs energy which otherwise would increase the tempera-
ture still further. In a polyatomic gas the total energy is divided amongst the
various modes (translational, rotational and vibrational) and the temperatures
reached are much lower than in the case of the monatomic gas. The reduction
of v due to these processes is significant, since with increasing ionization y—> 1,
and the temperature ratio depends upon the factor (y—1)/(y+1) which
becomes very small.

(Problems 11.6, 11.7, 11.8, 11.9, 11.10, 11.11)

Problem 11.1
If the period of a pendulum with large amplitude oscillations is given by
) 6
! T=To(1+§sin230)
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where ]0 1S the penod {or Snlall amplltude OSClllatlo Ild 6 18 tlle OSC
ns a 0 l"atlon
alllplltude Show that fOI 0 not exCCEdl“ 300 ] a"d 1 diifel b 0"’ 2 (4 a]ld fOI
L) 0/ g 1 0 y y /

Problem 11.2
The equation of motion of a free undamped non-linear oscillator is given by

mix = —f(x)

Show that for an amplitude x, its period

ru=4\/EJ e where F(x )—ro d
2)y [F(xo)_F(x)]Uzj gl 0 fxhde

Problem 11.3
g’;xe equation of motion of a forced undamped non-linear oscillator of unit mass is given

¥ +5(x)=F, cos wt

. = 3
Writing s(x) = s,x + s;x°, where s, and s; are constant, choose the variable wt = ¢, and
for s;« s, assume a solution ’

@

x=Y (a, cosgq.f: +b, singdr)

n=1

to show that all the sine terms and the even numbered cosine terms are zero, leaving the

fu;ldtgmental frequency term and its third harmonic as the significant terms in the
solution.

Problem 11.4
If the mutual interionic potential in a crystal is given by

v )]

mh(:r:l:] rois thz;,1 equilibrlilum value of the ion separation r, show by expanding V about V,
at the ions have small harmonic oscillations at a frequen@y given 2~ 2
where m is the reduced mass. quenty g by @ =72 Vol i

Problem 11.5
The potential energy of an oscillator is given by

V(x)=3kx*—3ax’
where a is positive and « k.
Assume a solution x = A cos wt+ B sin 2w is i i
‘ / t+ x, to show that this is a good approxi-
mation at wi=w*=k/m if x, = «A?/2wi and B=—aA?/6w?, where a = a/ml.)p
Problem 11.6 ’
The properties of a stationary gas at temperature T, in a large reservoir are defined by

Co, the velqcity of soupd, hy= ¢, Ty, the enthalpy per unit mass, and v, the constant value
of the specific heat ratio. If a ruptured diaphragm allows the gas to flow along a tube with
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velocity u, use the equation of conservation of energy to prove that
co e +1 s
y=1 2(y-1)

where ¢* is the velocity at which the flow velocity equals the local sound velocity.
Hence show that if u,/c*=M™* and u,/c, = M,, then :

(y+1)M?
*2 _ s
M = - DM +2

Problem 11.7

Using a coordinate system which moves with a shock front of velocity u,, show from the
conservation equations that ¢* in problem 11.6 is given by

c*=uu,
where u, is the relative flow velocity behind the shock front.

Problem 11.8

Use the conservation equations to prove that the pressure ratio across a shock frontina
gas of constant vy is given by

p_B-a

p1 1-Pa
where B = p,/p., the density ratio, and a = (y—1)/(y+1).
Problem 11.9

Use the results of problems 11.6 and 11.7 with the equation of momentum conservation
to prove that the shock front Mach number is given by

M= fire
Cq 1 +a
where y = p,/p,, the pressure ratio across the shock and @ =y—1/y+1. Hence show
that the flow velocity behind the shock is given by

e(1-a)(y—1)
u=

Vl+a)y+a)

Problem 11.10
The diagrams (p.377) show (a) a shock wave of pressure p, and flow velocity u
propagating into a stationary gas, pressure p;, and (b) after reflexion at a rigid wall the
reflected wave of pressure p; moving back into the gas behind the incident shock still at
pressure p,. Use the result at the end of problem 11.9 to show that the flow velocity u,
behind the reflected wave is given by

U _ (1 _a)(P:a/Pz_ 1)

c; Y(1+a)(ps/p.+a) ‘

and since u+u, =0 at the rigid wall, use this result together with the ratio for
¢,/ ¢, =(T>/ T;)"? to prove that

py_QRa+lly—a
P2 ay+1
\
where y=p,/p;and a = (y = 1)/(y+1).
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Problem 11.11
Use problems 11.10 to prove that the ratio

Ps_Pl_)z_*_l
P2~ D1 o

in the limit of very strong shocks. (Note that this value is 8 for y = 1-4 and 6 for y =5/3,
compared with the normal acoustic pressure jump of 2 upon reflexion.)

(a) : (b)

A |Rrigia

Rigid
wall wall
. Py
P, E Y
v : Pz ; -
R p
A v —
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