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Calculation of microcanonical entropy differences from configurational averages
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A simple expression is derived, enabling the calculation of the entropy difference between two microcanonical
equilibrium states at different energies in atomistic computer simulations. This expression only requires potential
energy samples from molecular dynamics or Monte Carlo simulations at the relevant energies. This presents an
alternative to switching methods such as thermodynamic integration or nonequilibrium work relations, as well
as flat-histogram random walks, all of which involve sampling in between the relevant states. The method is
especially suited for small (nanoscopic) systems such as clusters and proteins, and is applicable to first-principles
data directly.
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Entropy is a fundamental quantity in thermodynamics,
having great importance in physics and chemistry, not to
mention it being recognized as one of the most enigmatic
concepts in nature [1]. It is connected with the lack of
information about the microscopic state when fixing a given
set of macroscopic variables, and to the second law of
thermodynamics, which describes the notion of irreversibility
and the arrow of time [2].

The microcanonical ensemble, describing an isolated sys-
tem with a fixed number of particles N , fixed energy E,
and fixed volume V , has recently regained interest over the
traditional canonical ensemble (where the temperature T is
considered fixed instead of the energy), mainly in the context
of small systems (far from the thermodynamic limit) [3–7] but
also for long-ranged interactions where ensemble equivalence
does not hold, even in the thermodynamical limit [8].

In microcanonical thermodynamics, knowledge of the
entropy S = S(N,V,E) is the fundamental relation that fully
describes the system [9]. From a more practical point of
view, entropy differences are relevant in first-order phase
transitions and seem to be deeply connected to protein folding
energetics [10–12]. Direct calculation of the microcanonical
entropy in atomistic simulations, however, involves an intrinsic
computational challenge: namely, the estimation of the phase-
space volume in which the system evolves, which is related
to the problem of counting the number of states for discrete
systems. Thus, other approaches have been preferred instead,
such as thermodynamic integration [13], and nonequilibrium
work relations, such as the Jarzynski equality [14], for
the determination of free-energy differences, and indirectly
obtaining the entropy difference from them. Recently, Adib
[15] has derived the microcanonical equivalent of the Jarzynski
equality, which can be used to calculate isoenergetic entropy
differences using a switching parameter. Another widely used
technique for the determination of entropy is the Wang-Landau
(WL) algorithm [16,17], originally developed for discrete
models but soon generalized to the continuous case [18]. WL
techniques consist of performing a random walk in energy
space with the goal of achieving a flat histogram of energies.
The density of states is updated in the process, and finally
converges to its true value.
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In this Rapid Communication, a method for direct com-
putation of the microcanonical entropy difference between
two energies (possibly different phases of the same system)
is presented. This method only involves averages at the initial
and final states, without any need to invoke switching between
those states or flat-histogram random walks.

Microcanonical averages. We will consider a classical
system of 6N degrees of freedom (3N momenta, denoted
collectively by p, 3N coordinates denoted by r), with the
Hamiltonian

H = p2

2m
+ �(r). (1)

The probability of the system having phase-space coordi-
nates (r,p) at a fixed total energy E is given by [19,20]

P (r,p; E) = 1

�(E)
δ(E − H(r,p)), (2)

where

�(E) = 1

h3N

∫
dr dp δ(E − H(r,p)) (3)

is the density of states having energy between E and E +
dE, and h is Planck’s constant. From this density of states,
the microcanonical entropy is obtained by using Boltzmann’s
formula

S(E) = kB ln �(E).

Given that the dependence of the Hamiltonian on p is fully
known, those degrees of freedom can be removed from the
problem by integrating them explicitly [21,22]. To do this, we
separate H inside the delta function and use∫

dp δ(E − p2/2m − �(r)) →
∫

�p

d�p

|∇(p2/2m)| , (4)

where the last integral is over the surface �p of an hypersphere
of dimension 3N and radius

|p| =
√

2m(E − �(r)).

Upon replacing the area of the hypersphere [23], we can
rewrite Eq. (2) as

P (r; E) = 1

η(E)
�(E − �(r))

√
E − �(r)

3N−2
, (5)
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where η(E) is defined as

η(E) =
∫

dr �(E − �(r))
√

E − �(r)
3N−2

(6)

and �(x) is Heaviside’s step function, defined under the
convention

�(x) =
{

0, x � 0,

1, x > 0.

Note that a constant factor

α = 3N

2h3N

√
2πm

3N


(1 + 3N/2)
,

coming from the area of �p, cancels out when deriving Eqs. (5)
and (6), and therefore �(E) is proportional to η(E) with a
proportionality factor independent of E. We will refer to either
� or η as the density of states: For the purposes of computing
the microcanonical entropy they are completely equivalent,
because S(E) = kB ln η(E) + S0, with S0 a constant shift.

Using Eq. (5) we can define the microcanonical expectation
value of any configurational quantity A(r) as

〈A〉E = 1

η(E)

∫
dr �(E − �(r))

√
E − �(r)

3N−2
A(r). (7)

Entropy differences. We can devise a configurational quan-
tity σ (r) such that 〈σ 〉E depends on E only through �(E),
i.e., where the integral in Eq. (7) is independent of E. Then
knowledge of 〈σ 〉 at two different energies E and E′ should
give us the entropy difference

�S = S(E′) − S(E) = kB ln
�(E′)
�(E)

without information about the intermediate states. For the use
of this method in computer simulations, a second requirement
for the choice of σ is that it should be easily computable. We
proceed to show that the choice

σ (r; E0) = �(E0 − �(r))
√

E − �(r)
3N−2 (8)

for E0 < E fulfills this purpose. Substituting Eq. (8) into
Eq. (7), we get

〈σ 〉E,E0 = 1

η(E)

∫
dr �(E0 − �(r)) = d(E0)

η(E)
, (9)

in which it can be clearly seen that the integral d(E0) does not
depend on the value of E, only on the value of the reference
energy E0 and the potential energy function �. In fact,
this integral represents the volume in configurational space
enclosed by the surface �(r) = E0, and this is a geometric
property independent of any ensemble or energy.

From this choice of σ it follows that the entropy difference
�S can be obtained as

�S = kB ln
〈σ 〉E,E0

〈σ 〉E′,E0

, (10)

from which it seems convenient to write

S(E) = −kB ln〈σ 〉E,E0 + S0. (11)

Use in molecular dynamics or Monte Carlo simulations.
Equations (8) and (10) constitute the main result of this Rapid

Communication, and provide an alternate method, hereafter
referred to as the σ method. Suppose we want to calculate �S

between two energy states E and E′, where we assume E′ > E

with no loss of generality. We perform separate microcanonical
simulations of the system at E and E′, recording nε potential
energy samples φ

(ε)
i , with i = 1, . . . ,nε and ε = E,E′. We

then choose a reference energy E0 such that E0 < E (a detailed
criterion for this choice is proposed below) and compute

〈σ 〉E,E0 = 1

nE

∑
φi<E0

1√
E − φ

(E)
i

3N−2 , (12)

〈σ 〉E′,E0 = 1

nE′

∑
φi<E0

1√
E′ − φ

(E′)
i

3N−2 , (13)

where the summation is performed only on the samples with
φ < E0. From this, �S is given directly by Eq. (10). The
σ method is applicable to any microcanonical simulation
technique capable of producing potential energy samples—
this includes both classical and ab initio molecular dynamics,
as well as microcanonical Monte Carlo methods [24,25].

Entropy for a Lennard-Jones system. Figure 1 shows the
microcanonical entropy as a function of energy for a highly
densified fcc Lennard-Jones crystal (using argon parameters
σ = 3.41 Å and ε/kB = 119.8 K) composed of 3 × 3 × 3 unit
cells (108 atoms), and a lattice constant a = 4.2 Å. Circles in
the figure represent the calculation using the σ method. The
solid line represents the result of numerical integration of the
inverse temperature

�S =
∫

E→E′
dS = kB

∫ E′

E

dεβ(ε), (14)

using the fact that T dS = dE. Integration was implemented
using a cubic spline interpolation on β(E) = 1/kBT (E)
between discrete points.
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FIG. 1. (Color online) Entropy difference �S vs internal energy
E for a highly densified 108-atom Lennard-Jones system. Circles
were calculated using the σ method presented in this work, and the
solid line using integration of the inverse temperature. From left to
right, the arrows indicate the energies required to obtain solid and
liquid at the melting temperature Tm, and the dashed lines indicate
the entropies measured with the σ method at those energies.

050101-2



RAPID COMMUNICATIONS

CALCULATION OF MICROCANONICAL ENTROPY . . . PHYSICAL REVIEW E 84, 050101(R) (2011)

590 600 610 620 630
-ln σ

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

P
(-

ln
 σ

)

770 780 790 800 810
-ln σ

0

0.02

0.04

0.06

0.08

P
(-

ln
 σ

)

(a)

(b)

FIG. 2. (Color online) Probability density functions for − ln σ (r;
E0) at (a) E = 150 eV, E0 = 110 eV and (b) E = 330 eV, E0 =
210 eV. In each case, the solid blue rectangle indicates the 95%
confidence interval, while the solid red line indicates the expectation
value −〈ln σ 〉.

The σ method closely follows the curve obtained from
integration, and the inset shows a closeup of the energy
region where a first-order phase transition (melting of the fcc
crystal, at Tm = 5980 K) is observed. As the values of γ =
− ln σ (r; E0) are distributed according to what looks like a
truncated Gaussian distribution (see Fig. 2), an estimation of its
variance is not enough to appropriately construct a confidence
interval (for instance, at 95% confidence) and therefore
estimate the statistical error in the entropy measurements.
We can obtain such an interval by integrating the probability
distribution function shown in Fig. 2 from its minimum value
γmin up to an upper limit γmax such that the cumulative
distribution function reaches 0.95. We see that the average
〈γ 〉E,E0 , which is slightly larger (∼1% in the energy interval
considered in Fig. 1) than − ln〈σ 〉 by virtue of the Jensen
inequality

ln〈f 〉 � 〈ln f 〉,

always falls inside this range. For all points computed with the
σ method in Fig. 1 the statistical error in S(E) following the
procedure outlined above was estimated to be below 2%, and
accordingly, the statistical error in the differences �E (being
additive) can be estimated to be below 4%, equal to or smaller
than the size of the symbols in Fig. 1.

The integration method reveals a small dip (change in
concavity) as reported in previous simulations and experiments
on microcanonical phase transitions [26,27], while the σ

method predicts, besides the same change in concavity, a
small jump in entropy. The entropy of melting �S(Tm) =
Sliquid(Tm) − Ssolid(Tm) was determined from simulations at
Tm in the solid and liquid phases, yielding a value �S(Tm) =
0.487kB/atom (see Fig. 1, dashed lines) which is lower than
the high-pressure limit, namely, �S(Tm) = kB ln 2 [28]. This
value is in quite good agreement with the one obtained from
the latent heat of melting Lm = 0.2452 eV/atom, measured in
the same simulations as the difference in potential energies at
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FIG. 3. (Color online) Estimated entropy difference �S between
E = 170 eV and E′ = 180 eV, as a function of the reference energy
E0 employed.

Tm. From this, the entropy of melting is �S(Tm) = Lm/Tm =
0.483kB .

Efficiency considerations. Equation (8) leaves room for
choosing the reference energy E0 arbitrarily, as long as
E0 � min(E,E′). In practice, however, the choice of E0 may
affect the efficiency of the averages, as shown explicitly in
Fig. 3. Here the entropy difference between E = 170 eV and
E′ = 180 eV is plotted against the reference energy E0, using
the result from integration [Eq. (14)] as a control. Choosing
E0 between 1.02 and 1.18 eV/atom seems to yield optimal
results: Outside this range, either one of the probability density
functions PE(�) or PE′(�) becomes so small that those states
are not sampled correctly in the simulation.

In fact, the results of Fig. 4 suggest that the optimal-
ity criterion for E0 should be the following: E0 should
maximize the joint probability PE(� = E0) × PE′(� = E0).
Then, approximating PE(�) as a Gaussian distribution
with mean μE and variance σE , the optimal E0 is given
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FIG. 4. (Color online) Probability density functions (PDFs) for
the potential energy � at E = 170 eV and E′ = 180 eV. Verti-
cal dashed lines represent the lower (1.02 eV/atom) and upper
(1.18 eV/atom) limits for optimal averages in Fig. 3.
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by

E0 = αμE′ + (1 − α)μE, (15)

where

α = σ 2
E

σ 2
E′ + σ 2

E

.

In the current case, this yields E0 ≈ 1.12 eV/atom [at the
intersection of the probability density functions (PDFs) in
Fig. 4].

The need for a certain amount of overlapping between the
PDFs limits the application of the method to systems such
that potential energy fluctuations are of the order of (or larger
than) the energy difference between the states. In order to
quantify this limitation more precisely, we may impose that
the probability of � being less than E0 must not fall below
a certain threshold pt for either E or E′, otherwise σ (r; E0)
could be poorly sampled. Under the Gaussian approximation
for PE(�), this condition leads to

erf

[
−σE�μ√

2
(
σ 2

E + σ 2
E′

)
]

� 2pt − 1, (16)

erf

[
−σE′�μ√

2
(
σ 2

E + σ 2
E′

)
]

� 2pt − 1, (17)

where

erf(x) = 2√
π

∫ x

0
dt e−t2

is the error function, and �μ = μE′ − μE is the difference of
average potential energies. In a microcanonical system, σE is
also the variance of the kinetic energy, related to the number

of degrees of freedom N and the specific heat per atom cv

through Lebowitz’s formula [29]

σ 2
E = 3N

2β2

(
1 − 3kB

2cV

)
.

This relates the range of applicability of the method, in
terms of the admissible energy difference �E = E′ − E, to
the number of degrees of freedom N : For small systems,
�E can be chosen to be larger. This is not as strong a
limitation as it first seems, because in systems with few degrees
of freedom, such as metallic clusters, proteins, and other
nanoscopic systems, the fluctuations can be large enough. The
main field of application envisioned here is first-principles
molecular dynamics simulations, where small systems are
mandatory and switching methods or WL random walks are
impractical.

Concluding remarks. In summary, a method for the di-
rect computation of microcanonical entropy differences is
presented, based on sampling the configurational volume
enclosed by a reference value of potential energy E0 as
seen from two different energy states. The method is en-
visioned for small systems where potential energy fluc-
tuations are large enough to cross the total energy gap
between states with some nonvanishing probability. It has
shown to be precise enough to reproduce the convex dip
observed at the transition energies in small Lennard-Jones
systems.
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