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Abstract In this work we review the formalism used in describing the thermody-
namics of first-order phase transitions from the point of view of maximum entropy
inference. We present the concepts of transition temperature, latent heat and entropy
difference between phases as emergent from the more fundamental concept of internal
energy, after a statistical inference analysis. We explicitly demonstrate this point of
view by making inferences on a simple game, resulting in the same formalism as in
thermodynamical phase transitions. We show that analogous quantities will inevitably
arise in any problem of inferring the result of a yes/no question, given two different
states of knowledge and information in the form of expectation values. This exposi-
tion may help to clarify the role of these thermodynamical quantities in the context of
different first-order phase transitions such as the case of magnetic Hamiltonians (e.g.
the Potts model).

Keywords Maximum entropy · Bayesian inference · Phase transitions

1 Introduction

Jaynes’ proposal of the principle ofmaximum entropy (PME) as a general tool of prob-
abilistic inference [1,2] is remarkable in that it is both widely used [3] and somewhat
controversial [4,5]. It asserts that the most unbiased probability distribution P given
some fixed knowledge I is the one that maximizes Shannon’s information entropy,
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S[P(x |I)] = −
∑

x

P(x |I) log2 P(x |I) (1)

while being consistent with said knowledge. This is because S[P] is a measure of
uncertainty [6] or lack of knowledge about the degrees of freedom (represented col-
lectively by x in the notation above) and, maximizing it leads to the probabilistic
model containing the least amount of information, but nevertheless able to reproduce
the features one demands of it. As this is a process of inference it cannot be deduc-
tive: predictions derived from the maximum entropy model may be proved wrong by
subsequent measurements, and this reflects an incompleteness of the fixed knowledge
used to constrain the maximization.

Jaynes’ interpretation of the formalism of statistical mechanics sees it as just the
application of this principle of maximum entropy, valid in all statistical inference,
to the case of a macroscopic number of particles (and degrees of freedom). In this
situation the predictions are almost perfectly sharp, with uncertainties vanishing as
1/

√
N , with N the number of degrees of freedom. This is all well described for the

case of thermodynamic equilibrium of a single phase. However, how this information-
theoretical interpretation manifests itself in the case of the study of phase transitions,
andwhat canwe learn from this, is an issue which has not been so extensively clarified.
For instance, in his book on probability theory [2] (p. 602), Jayneswrote in a somewhat
cryptic footnote, that

“... in statisticalmechanics the relative probability Pj/Pk of two different phases,
such as liquid and solid, is the ratio of their partition functions Z j/Zk , which are
the normalization constants for the sub-problems of prediction within one phase.
In Bayesian analysis, the data are indifferent between two models when their
normalization constants become equal; in statistical mechanics the temperature
of a phase transition is the one at which the two partition functions become
equal...”

This suggests that the problem of liquid-solid phase transition, or in fact, any phase
transition, can be posed as a model comparison problem, and therefore the transition
temperature and the free energy can be given an information-theoretical meaning. In
this work, we attempt to clarify (“demistify”, one might even say) the interpretation
of these quantities, showing that they are consequences of the maximum entropy
inference rule under known internal energy averages. In this sense, only this internal
energy is fundamental, whereas temperature, entropy and free energy are derived
quantities, of a statistical nature. This statistical character of temperature is understood,
for instance, in terms of the kinetic theory of gases; however, we will show that its
meaning is much wider in the context of information theory.

In order to remove all particularities of thermodynamics from the treatment of
first-order phase transitions, we present a parallel of the formalism used in first-order
phase transitions based entirely on the application of the PME. We introduce a simple
game, the “disc throwing” game, and answer two questions related to it by means of
the PME. In the answers to these questions we will recover the concepts of transition
temperature, Helmholtz free energy and the rule that imposes its equality for the two
phases at the coexistence point.
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The rest of the paper is organized as follows. In Sect. 2 we review the main features
of the maximum entropy formalism. Section 3 shows an illustration of PME inference,
whileSect. 4 describes and solves the disc throwinggameproblem. InSect. 5weexpose
the perfect parallel between the solution of this problem and that of the coexistence of
two phases in thermodynamical equilibrium. Finally we conclude with some remarks.

2 Maximum Entropy Inference

Consider a system having N discrete degrees of freedom x = (x1, . . . , xN ) and being
fully described in statistical terms by a function f (x) with known expectation value
f0. Knowledge of f0 is symbolically represented by I. According to the PME, the
most unbiased model is the one that maximizes the Gibbs-Shannon entropy functional

S = −
∑

x

P(x|I) log2 P(x|I) (2)

subject to the constraint I, i.e., to
〈
f (x)

〉
= f0. (3)

Maximization under this constraint, and the always implicit constraint of proper nor-
malization of the probability, is achieved by the inclusion of Lagrange multipliers
λ and μ respectively, after which the problem reduces to the maximization of the
augmented function

S̃ = −
∑

x

P(x|I) log2 P(x|I) + λ( f0 −
∑

x

P(x|I) f (x))

+μ(1 −
∑

x

P(x|I)). (4)

This leads to the well-known maximum entropy (MaxEnt) model

P(x|λ) = 1

Z(λ)
exp(−λ f (x)) (5)

in which we have changed the notation from the purely abstract P(x|I) to the mode
concrete P(x|λ), given that the parameter λ distinguishes between all the possible
states of knowledge compatible with the possible values of f0. The function Z ,

Z(λ) =
∑

x

exp(−λ f (x)). (6)

is known as the partition function. The Lagrange multiplier λ is usually determined
as the unique solution of

− ∂

∂λ
ln Z(λ) = f0. (7)

123



Found Phys

The procedure just outlined could in principle be performed using so-called gener-
alized entropies in place of the Gibbs-Shannon entropy (Eq. 2), such as the Tsallis [7]
or Rényi [8] entropies. Although these entropies may be valid tools in describing
the complexity of non-extensive systems, their use in statistical inference has been
shown to lead to inconsistencies [9–12]. If the degrees of freedom contained in x are
continuous, Shannon entropy needs to be replaced with the relative entropy

S = −
∫

dxP(x|I ∧ I0) log2
P(x|I ∧ I0)

P(x|I0) (8)

where I0 denotes an “initial” state of knowledge. The solution to themaximum entropy
problem is now

P(x|I ∧ I0) = 1

Z(λ)
P(x|I0) exp(−λ f (x)) (9)

with

Z(λ) =
∫

dxP(x|I0) exp(−λ f (x)). (10)

In both cases (discrete and continuous degrees of freedom), the maximized entropy
has a value

S = ln Z(λ) + λ f0. (11)

Now, we have just described the formalism of the canonical ensemble if we
think of the system as composed by n particles with position ri and momen-
tum pi (with i=1,...,n) and the descriptor function as the Hamiltonian f =
H(r1, . . . , rn,p1, . . . ,pn). Then Eq. 5 is the canonical distribution where we identify
λ = β = 1/(kBT ).

In thermodynamic notation, Eq. 11 reads,

S(β)/kB = ln Z(β) + βE(β) (12)

If we introduce the Helmholtz free energy βF(β) = − ln Z(β), Eq. 12 reduces to

S(β)/kB = β(E(β) − F(β)) (13)

i.e., using β = 1/kBT ,
F(T ) = E(T ) − T S(T ). (14)

3 An Illustration of the Maximum Entropy Formalism

Suppose we have a swimming pool full of plastic balls (all spherical) of different radii.
The average volume of a ball is V . What is the average radius?

We have the constraint, 〈
4

3
πr3

〉
= V, (15)

123



Found Phys

which is equivalent to 〈
r3

〉
= 3

4π
V, (16)

from which the most unbiased model for r is

P(r |λ) = 1

Z(λ)
exp(−λr3)�(r). (17)

The partition function is given by

Z(λ) =
∫ ∞

0
dr exp(−λr3) = �(4/3)λ−1/3, (18)

therefore, the value of λ is determined from

− ∂

∂λ
ln Z(λ) = 1

3λ
= 3

4π
V, (19)

i.e., λ = 4π/(9V ). Note that from inspection of Eq. 17 and the fact that λ is positive,
the most probable radius is zero and the probability monotonically decreases with r .
The expectation of r is then

〈r〉 = 7
1

Z(λ)

∫ ∞

0
drr exp(−λr3) = 31/3

3

�(2/3)

�(4/3)

·
(
3V

4π

)1/3

≈ 0.729011
√
3
〈
r3

〉
. (20)

From this example two interesting things emerge. First, the expected radius is less
than the naïve estimate r0 = √

3
〈
r3

〉
, valid in the case where all the balls have the same

radius. Second, the Lagrange multiplier λ is larger for small V , and this is expected
given that the smaller V is, the possible radii are more concentrated around zero
and therefore there is less uncertainty about the value of the radius. This means the
constraint of known V (Eq. 15) has greater “weight” for smaller V . As the distribution
function P(r |λ) decreases from r = 0 onward, there are more balls with r ≤ r0 than
with r > r0 and thus the estimate 〈r〉 is skewed towards zero.

4 A Simple Disc Throwing Game

Suppose a player can throw a disc into a surface A (with area�A), containing within it
a smaller surface B (with area�B < �A). We consider A and B to be disjoint regions,
as shown in Fig. 1. A successful hit within B gives the player nB points, whereas a
hit inside A (outside B) gives nA points to the player (as hitting B is more difficult,
nB > nA). This is similar to the game “rayuela” as is known in some South American
countries.

We can present two questions about this game:

123



Found Phys

Fig. 1 Schematic representation
of the disc throwing game

(a) With only the information laid out above, and particularly without knowing any-
thing about the performance of the player, what probability should one assign to
hitting B?

(b) Now consider the player has obtained an average score of n in the past (over
enough trials to be considered a reliable average). What probability should one
assign now to hitting B?

In (a) the intuitive answer is that the probabilities of hitting either A or B are com-
pletely determinedby their areas. In fact, considering each landingpoint as a coordinate
inside A, and because such points are mutually exclusive, exhaustive alternatives and
there is symmetry under exchange, we can easily see that

P(A|I1)
P(B|I1) = �A

�B
(21)

From this, given that landing in A or B constitutemutually exclusive and exhaustive
propositions, P(A|I1) + P(B|I1) = 1. Therefore,

P(α|I1) = �α

�A + �B
(22)

with α = A, B. The predicted score of the player, with just the information we have
in (a), is then

n = �AnA + �BnB

�A + �B
. (23)

We see that probabilities are governed only by the ratio �A/�B , and we can con-
clude that always P(A|I1) > P(B|I1), given that the area of B is considerably
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smaller. Now, what happens in (b) is that we have to constrain the inference to this
new information, given in the form of an expectation value. We invoke the law of
large numbers and assume

〈
n
〉 = n, then the most unbiased probability for either result

given n, according to the PME, is (using Eq. 9),

P(α|I2) = 1

Z(λ)
�α exp(−λnα) (24)

with
Z(λ) = �A exp(−λnA) + �B exp(−λnB), (25)

and

− ∂

∂λ
ln Z(λ) = n. (26)

After explicitly using the result of Eq. 25 in Eq. 26 and some algebra, we have that

�A (n − nA) exp(−λnA) = �B (nB − n) exp(−λnB) (27)

from which it follows that λ is given by

λ(n) = − 1

nB − nA

[
ln�A − ln�B + ln

n − nA

nB − n

]
. (28)

In order to simplify notation, let us introduce


n = nB − nA, (29)


S = SB − SA = ln�B − ln�A. (30)

Then Eq. 28 reads,

λ
n − 
S = ln
nB − n

n − nA
(31)

It is clear that, when λ = 0, Eq. 31 implies

nB − n

n − nA
= �A

�B
. (32)

which is nothing but the result of section (a), Eq. 23. This happens when the reported
average score n is the same as predicted from the area information alone. This reflects
a complete lack of ability from the player to control the hitting spot, because the results
do not differ from pure “random” shots. However, if n is not consistent with Eq. 23,
then λ 	= 0 and the ratio between probabilities is not simply the ratio of the respective
areas, but it is given by

P(A|I2)
P(B|I2) = �A

�B
exp(−λ(nA − nB)) (33)
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i.e., defining 
 ln P = ln P(B|I2) − ln P(A|I2),


 ln P = 
S − λ
n, (34)

or, if we define Fα = nα − Sα/λ, we have


 ln P = −λ
F. (35)

Therefore, the most probable outcome (A or B) would be the one with lowest value
of F .

After comparing Eqs. 34 and 31, the ratio of probabilities is given by

P(A|I2)
P(B|I2) = nB − n

n − nA
. (36)

There will be an interesting value of n, namely the average (nA + nB)/2, where
P(A|I2) = P(B|I2). In this case we are maximally uncertain with respect to which
region the player will hit, i.e., we have “canceled out” all the information we had from
the areas by using the average score. This situation corresponds to a “critical value”
of the Lagrange multiplier,

λ0 = λ
(nA + nB

2

)
= 
S


n
. (37)

5 Bayesian Thermodynamics

Perhaps it will be striking to the reader (at first) to notice that we have replicated
the formalism used to study first-order phase transitions in thermodynamical systems.
Imagine the two regions A and B of the game introduced previously, as regions in
phase space corresponding, for instance, to liquid and solid, respectively. We can
relate the area of each region � to the volume in phase space occupied by each of the
thermodynamic phases, and in this sense, the quantity

S = ln� (38)

is readily interpreted as the Boltzmann entropy (taking kB=1). Therefore the most
probable phase (i.e., the most stable phase in thermodynamical terms) is, in absence
of any other information, the one with the largest value of entropy. This is the same
situation as in the microcanonical ensemble [13].

When we have information about the expected (or average) score n, analogous to
the measured internal energy E of a thermodynamical system (nA and nB are then the
internal energies for the liquid and solid phases, respectively), what decides the most
probable phase is, according to Eq. 35, the difference in the quantity

F = n − S/λ (39)
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Table 1 Equivalences between
concepts arising in the analysis
of the throwing game and
thermodynamical concepts

Throwing game Thermodynamics

Logarithm of area (ln�) Entropy (S)

Game average score (n) Internal energy (E)

Score difference (
n) Latent heat (L)

Critical multiplier (1/λ0) Transition temperature (T0)

which is precisely the Helmholtz free energy (under the identification λ = β = 1/T ),

F = E − T S. (40)

If we are given a low enough value of energy (close to the energy of the ideal
solid) then, despite the fact that the liquid phase has a larger entropy, we are forced to
conclude that the system is in one of the (relatively) few solid phase points. Because
this reversal of our prediction after knowing n is strikingly unexpected, this situation
is described by a large value of the Lagrange multiplier λ which, in the context of
thermodynamics, corresponds to a low value of temperature T .

The limiting situation when we cannot claim to know the most probable phase
happens when 
F = 0, which is the condition of thermodynamic phase coexistence.
The Lagrange multiplier then is λ0 = 
S/
n, or, in thermodynamic notation,

T0 = L/
S(T0), (41)

where L is the latent heat associated with the first-order phase transition and 
S(T0)
is the entropy difference at the transition temperature T0.

All these equivalences are summed up in Table 1.

6 Concluding Remarks

We have shown that, because to every yes/no question we can associate a change in
evidence introduced by a new fact, there exist analogous quantities to the free energy
difference between phases and the transition temperature, that are closely connected
to this change in evidence. When the evidence is strong enough to completely cancel
out our initial judgments about the probability of one phase over another and leave
us undecided, the “weight” of this evidence is proportional to the transition inverse
temperature.

Thus, in this view, the problem of thermodynamic equilibrium between phases is
seen as answering the question: is the system in phase A if we know that its average
energy is E? in a Bayesian/maximum entropy formalism. The concepts of transition
temperature and free energy arise naturally as consequences of this inference frame-
work, and therefore are not intrinsic properties of the systems or the phases.
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