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Abstract. In this work we develop a method for inferring the underlying configurational
density of states of a molecular system by combining information from several microcanonical
molecular dynamics or Monte Carlo simulations at different energies. This method is based on
Jaynes’ Maximum Entropy formalism (MaxEnt) for Bayesian statistical inference under known
expectation values. We present results of its application to measure thermodynamic entropy
and free energy differences in embedded-atom models of metals.

1. Introduction
The Maximum Entropy (MaxEnt) principle, proposed by Jaynes in 1957 [1] and widely used
in Bayesian probability, allows the construction of the most unbiased probabilistic models that
reproduce certain information. Recently, Caticha [2] has proposed a Maximum Relative Entropy
principle to update a probabilistic model under known information from a previous state of
knowledge. In this work we apply this idea to the microcanonical distribution of configurational
degrees of freedom, in order to update a previous guess of the configurational density of states
(CDOS) with information from several microcanonical simulations at different energies.

2. Microcanonical distribution
We will consider a classical system of 6N degrees of freedom (3N momenta, denoted collectively
by p, 3N coordinates denoted by r), with Hamiltonian

H =
p2

2m
+ Φ(r). (1)

The probability of the system having phase space coordinates (r,p) at fixed total energy E
is given by [3, 4]

P (r,p;E) =
1

Ω(E)
δ(E −H(r,p)), (2)

where
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Ω(E) =
1

h3N

∫
drdpδ(E −H(r,p)) (3)

is the density of states having energy between E and E + dE, and h is Planck’s constant. From
this density of states, the microcanonical entropy is obtained by using Boltzmann’s formula,
S(E) = kB ln Ω(E).

Given that the dependence of the Hamiltonian on p is fully known, those degrees of freedom
can be removed from the problem by integrating them explicitly [5, 6, 7, 8]. The probability
distribution function for the configurational degrees of freedom takes the form

P (r;E) =
1

η(E)
Θ(E − Φ(r))

√
E − Φ(r)

3N−2
, (4)

where

η(E) =

∫
drΘ(E − Φ(r))

√
E − Φ(r)

3N−2
(5)

is proportional to Ω(E) and Θ(x) is Heaviside’s step function.
Using Eq. 4 we can define the microcanonical expectation value of any configurational

quantity A(r) as

〈A〉E =
1

η(E)

∫
drΘ(E − Φ(r))

√
E − Φ(r)

3N−2
A(r). (6)

3. Determination of the Density of States
From Eq. 6, it can be deduced that

P (φ;E) = 〈δ(Φ(r)− φ)〉 =
1

η(E)
Θ(E − φ)

√
E − φ3N−2D(φ) (7)

where

D(φ) =

∫
drδ(Φ(r)− φ) (8)

is the configurational density of states (CDOS). If we have access to D(φ) we can compute the
expectation of any function of φ at an arbitrary energy E as

〈A(Φ)〉E =
1

η(E)

∫ E

φ0
dφD(φ)

√
E − φ3N−2A(φ). (9)

Our aim is to reconstruct D(φ) from several known configurational averages at different
energies. Suppose we have a prior estimate of the density of states, D0(φ) and incorporate
knowledge of the following expectation value

〈f(Φ)〉E = F (E), (10)

then the most unbiased estimate of D(φ) is obtained by maximization of the relative entropy

S[D,D0] = −
∫
dφP (φ;E) ln

( P (φ;E)

P0(φ;E)

)
(11)

under the constraint given in Eq. 10, where P and P0 are the probability density functions using
D and D0, respectively. This leads to the following updating rule

D(φ) = D0(φ) exp(λf(φ)), (12)
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where λ is a Lagrange multiplier to be determined by imposing the validity of the constraint
itself, condition which can be written as

∂

∂λ
lnZ(λ) = F (E), (13)

where

Z(λ) =

∫ E

φ0
dφ
√
E − φ3N−2D0(φ) exp(λf(φ)). (14)

Now, consider the case f(φ) = Θ(b − φ)Θ(φ − a), where a and b form an arbitrary interval
so that f(φ) = 1 if a < φ < b, and f(φ) = 0 otherwise. Then, F (E) is just the probability
P (a < Φ < b|E), that is, the probability of Φ(x) falling into the interval [a, b]. The normalization
constant Z(λ) is given by

Z(λ) = G(φ0, a) +G(b, E) + exp(λ)G(a, b) (15)

where

G(x, y) =

∫ y

x
dφ
√
E − φ3N−2D0(φ). (16)

Eq. 13 thus connects λ with P (a < Φ < b|E) in the following form,

P (a < Φ < b|E)
(
G(φ0, a) +G(b, E) + exp(λ)G(a, b)

)
= exp(λ)G(a, b), (17)

therefore

exp(λ) =
P (a < Φ < b|E)

1− P (a < Φ < b|E)

(G(φ0, a) +G(b, E))

G(a, b)
. (18)

Consider now a discretization of φ in n intervals, φ = i∆φ, where ∆φ = (E−φ0)/n, and i an
integer index between 0 and n − 1 (thus the condition φ < E is imposed implicitly, as k < n).
To further simplify, we measure φ so that φ0 = 0 and ∆φ = 1. We can then approximate, for
sufficiently large n,

G(a, b) =
b∑
i=a

√
E − i3N−2d(0)i (19)

where d
(0)
i = D0(i). Taking a = k and b = k + 1, we have

dk =
Nk(E)

N −Nk(E)

∑
i6=k
√
E − i3N−2d(0)i√
E − k3N−2

. (20)

where Nk(E) is a histogram of potential energies at total energy E.
This is a relatively simple rule for incorporating information from a microcanonical simulation

at total energy E into a prior guess of a discretized CDOS. The only input needed from the
simulation is the histogram Nk(E). This updating rule is guaranteed to converge: when it does

(dk = d
(0)
k ), we have

Pk(E) =
Nk(E)

N
=

√
E − k3N−2dk∑n−1

i=0

√
E − i3N−2di

, (21)

which is just a discretized version of Eq. 7, and the denominator is an estimate of η(E), the full
(kinetic plus configurational) density of states.

In practice, we may start with a constant CDOS as initial guess, d
(0)
k = 1, and iteratively

combine the information from several microcanonical simulations at different energies, each one
only updating the CDOS for the potential energies actually observed.
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Figure 1. Left panel, reconstructed configurational density of states (CDOS) for Au, 108 atoms.
Right panel, predicted caloric curve from CDOS and actual simulation values.

4. Results
Figure 1 (left panel) shows the CDOS computed using this procedure for a Au system composed
of 108 atoms, simulated at 24 different energies (corresponding to applying initial kinetic energies
between 6K and 6000K to the ideal face-centered cubic structure) via molecular dynamics with
the Sutton-Chen potential [9]. This CDOS agrees remarkably with a simple model

D(φ) =
(
a(φ− φ0) + 1

)b
, (22)

with fitted parameters a =43.764 eV−1, b =134.297, and the energy of the ideal crystalline
structure φ0 =-406.715 eV. The right panel of figure 1 shows the predicted values of temperature
as a function of total energy, together with the measured values from several simulations. These
predicted temperatures are derived from the CDOS by computing, according to Eq. 9, the
expectation value

T =
〈2(E − Φ)

3N

〉
E
. (23)

5. Final Remarks
We have developed a method for obtaining the configurational density of states from
microcanonical simulations, based on maximization of the relative configurational entropy under
known expectation values. The formula (Eq. 20) resembles the histogram reweighting methods
for the canonical ensemble [10].
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