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Estimation of Tsallis’ q-index in Non-extensive Systems
Sergio Davis and Gonzalo Gutiérrez

Departamento de Física, Facultad de Ciencias, Universidad de Chile

Abstract. In this work we derive a microscopic estimation formula for the parameters in the q-exponential distribution,
appearing in Tsallis statistics. This avoids the need for fitting a (cumulative) probability distribution to obtain q.
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PACS: 05.10.-a, 02.50.Tt

INTRODUCTION

The q−exponential family of probability distributions is a common statistical model that generalizes the canonical
(Boltzmann-Gibbs) distribution of statistical mechanics, appearing frequently in non-equilibrium or non-extensive
systems, chaotic systems and fractals, among other phenomena. It is defined as

P(!x|β ,q) = 1
Z

exp(−βH(!x);q), (1)

where the notation exp(y;q) represents the q−exponential function,

exp(y;q) = Θ(1+(1−q)y) [1+(1−q)y]
1

1−q , (2)

which reduces to the usual exponential function exp(y) in the limit q → 1. Here H is some relevant “descriptor”
function (usually the Hamiltonian, in Physics applications) and Z is a normalization constant (a partition function).
These q−exponential distributions can be derived, in an analogous way as Jaynes’ method of maximum entropy [1],
from maximization of a generalized, non-extensive entropy [2],

Sq = kB
1

q−1

(
1−

∫
d!xP(!x|R)q

)
, (3)

known as Tsallis entropy, subject to appropriate constraints fixing the expected energy. In the limit q→ 1, Sq reduces
to the usual Shannon-Gibbs entropy

S =−kB

∫
d!xP(!x|R) lnP(!x|R) (4)

and Eq. 1 recovers the Boltzmann-Gibbs distribution,

P(!x|R) = 1
Z

exp(−βH(!x)). (5)

There is no constructive method to obtain q from a given set of observed states!x (or measurements of H), and the
usual route is to accumulate an histogram to approximate P (or the cumulative distribution function associated with P)
and use nonlinear least-squares methods to fit q. Recently, a maximum likelihood method has been proposed [3].

In this work we present a simple estimation formula for the q index in a q-exponential distribution, with potential
applications in numerical simulations of non-extensive systems.
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DERIVATION

We will only consider the case q≤ 1, as this ensures the correct normalization of P. In fact, without this condition the
theory has been shown to be internally inconsistent [4].

We can always express Eq. 1 as a canonical distribution

P(!x|β ,q) ∝ exp(−H̃(!x;β ,q)), (6)

with a new fictitious Hamiltonian H̃(!x;β ,q), defined as

H̃(!x;β ,q) =− lnΘ(1− (1−q)βH(!x))− 1
1−q

ln(1− (1−q)βH(!x)). (7)

Now we can use the recently proposed conjugate variables theorem (CVT) [5], which is a convenient relationship
between averages for a canonical distribution, generalizing the equipartition theorem and hypervirial theorems. For
the canonical distribution of Eq. 5, CVT implies

〈
∇ ·!v

〉
= β

〈
!v ·∇H(!x)

〉
. (8)

Due to the way we defined the new Hamiltonian H̃ (Eq. 6) the corresponding fictitious Lagrange multiplier has a
value of 1, and CVT holds as

〈
∇ ·!v

〉
=
〈
!v ·∇H̃(!x;β ,q)

〉
. (9)

Substituting the definition of H̃ to put it in terms of the original Hamiltonian we obtain
〈

∇ ·!v
〉
= β (1−q)

〈δ (1− (1−q)βH)!v ·∇H
Θ(1− (1−q)βH)

〉
+β

〈 !v ·∇H
1− (1−q)βH

〉
, (10)

and we note the first term of the right-hand side vanishes for q≤ 1, as the probability in Eq. 1 is zero on the hypersurface
imposed by the delta function. We finally arrive at

〈
∇ ·!v

〉
= β

〈 !v ·∇H
1− (1−q)βH

〉
, (11)

from which a system of equations can be obtained for q and β by replacing different choices of the (arbitrary)!v vector
field (the only requirement being that every choice of !v is differentiable). We can improve readability by using the
substitution

!v = (1− (1−q)βH)!ω, (12)

leading to the more familiar form
〈

∇ ·!ω
〉
= β

[〈
!ω ·∇H

〉
+(1−q)

〈
∇ · (H!ω)

〉]
. (13)

In this form, the first term is the usual (canonical) CVT, and the extra “non-extensive” term vanishes in the limit
q→ 1. Using !ω = g(!x)!χ/(!χ ·∇H), we get

〈
β̂g
〉
+
〈 !χ ·∇g
!χ ·∇H

〉
= β

[〈
g
〉
+(1−q)

(〈
β̂Hg

〉
+
〈!χ ·∇(gH)

!χ ·∇H

〉)]
, (14)

where

β̂ = ∇ ·
(

!χ
!χ ·H

)
(15)

is the most general estimator for the inverse temperature [6, 7]. Two particular cases easily yield the desired system of
equations. For simplicity we choose g = 1 and g = H, which gives

〈
β̂
〉
= β

[
1+(1−q)

(
1+
〈

β̂H
〉)]

(16)
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〈
β̂H
〉
+1 = β

[〈
H
〉
+(1−q)

(〈
β̂H2

〉
+2
〈
H
〉)]

. (17)

Combining Eqs. 16 and 17 we finally arrive at an expression for 1− q (which is of course not unique) depending
only on microscopical averages, namely

1−q =

〈
β̂
〉〈

H
〉
−
〈
β̂H
〉
−1

(
1+
〈
β̂H
〉)2

−
〈
β̂
〉(

2
〈
H
〉
+
〈
β̂H2

〉) . (18)

This expression, along with Eq. 13 constitutes our main result. Once q is computed using this formula, then β can
be computed using either Eq. 16 or 17.

For a non-extensive Hamiltonian with kinetic degrees of freedom,

H(!x,!p) = K(!p)+Φ(!x) =
N

∑
i=1

p2
i

2mi
+Φ(!x) (19)

(where K is the kinetic energy) such as the HMF (Hamiltonian mean field) model [8], we already have a widely used
estimator for the inverse temperature, the kinetic estimator β̂K defined as

β̂K =
3N
2K

=
1

kBTK
(20)

which is nothing but the typical formula used in molecular dynamics simulations,

3
2

NkBTK =
N

∑
i=1

p2
i

2mi
. (21)

Note that for the Boltzmann-Gibbs case,
〈

δ β̂δH
〉
=
〈

β̂H
〉
−
〈

β̂
〉〈

H
〉
=−1 (22)

and then from Eq. 18 we recover the fact that 1−q = 0.

APPLICATIONS

The q-Gaussian Distribution

The non-extensive analog of the ubiquitous Gaussian distribution is the so-called q-Gaussian distribution. It has the
form

P(x|q,µ ,σ) =
1
Z

exp
(
− 1

2σ2 (x−µ)2;q
)

(23)

which is a particular case of Eq. 1 with

H(x) =
(x−µ)2

2
(24)

β = 1/σ2. (25)

Using the one-dimensional version of Eq. 13,
〈
ω ′(x)

〉
= β

[
(2−q)

〈
ωH ′〉+(1−q)

〈
ω ′H

〉]
. (26)

and providing two different choices of ω(x) we can construct a system of equations for β and q. First we use
ω(x) = (x−µ)/2, obtaining
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FIGURE 1. Preset and estimated values of q for µ =20, σ =5 and q between 0.85 and 1. The straight solid line represents the
perfect estimation. Filled circles are the averages over 10 different realizations of the numerical experiment for each simulated value
of q, with a dispersion indicated by the error bars.

β
〈
H
〉
(2+3(1−q)) = 1. (27)

Then, for ω(x) = (x−µ)3

4 , we get

β
〈
H2〉

(
1+

5
2
(1−q)

)
=

3
2
〈
H
〉
. (28)

Combining Eqs. 27 and 28 we finally obtain

1−q =
1
3

(
4
〈
H2〉

5
〈
H2
〉
−9
〈
H
〉2 −2

)
. (29)

Figure 1 shows the numerical evaluation of Eq. 29 using data sampled from different q-Gaussian distributions (with
µ =20, σ =5 and q ranging from 0.85 to 1) by means of a Metropolis-Hastings [9] procedure. The burning time was
5×105 steps and the samples for averaging were taken every 100 steps for a total of 1×104 samples.

CONCLUDING REMARKS

We have derived microscopic expressions for the q index appearing in q-exponential (Tsallis) distributions with
q≤ 1, both in the case of an arbitrary Hamiltonian (here the estimation formula involves estimators β̂ for the inverse
temperature) and for the case of a q-Gaussian distribution. Numerical experiments on the q-Gaussian case demonstrate
the accuracy of the formula.
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