

Estimation of Tsallis' q-index in non-extensive systems

Sergio Davis and Gonzalo Gutiérrez

Citation: AIP Conference Proceedings 1558, 1779 (2013); doi: 10.1063/1.4825869
View online: http://dx.doi.org/10.1063/1.4825869
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1558?ver=pdfcov
Published by the AIP Publishing

Estimation of Tsallis' q-index in Non-extensive Systems

Sergio Davis and Gonzalo Gutiérrez
Departamento de Física, Facultad de Ciencias, Universidad de Chile

Abstract

In this work we derive a microscopic estimation formula for the parameters in the q-exponential distribution appearing in Tsallis statistics. This avoids the need for fitting a (cumulative) probability distribution to obtain q.

Keywords: tsallis statistics
PACS: 05.10.-a, 02.50.Tt

INTRODUCTION

The q-exponential family of probability distributions is a common statistical model that generalizes the canonical (Boltzmann-Gibbs) distribution of statistical mechanics, appearing frequently in non-equilibrium or non-extensive systems, chaotic systems and fractals, among other phenomena. It is defined as

$$
\begin{equation*}
P(\vec{x} \mid \beta, q)=\frac{1}{Z} \exp (-\beta H(\vec{x}) ; q) \tag{1}
\end{equation*}
$$

where the notation $\exp (y ; q)$ represents the q-exponential function,

$$
\begin{equation*}
\exp (y ; q)=\Theta(1+(1-q) y)[1+(1-q) y]^{\frac{1}{1-q}} \tag{2}
\end{equation*}
$$

which reduces to the usual exponential function $\exp (y)$ in the limit $q \rightarrow 1$. Here H is some relevant "descriptor" function (usually the Hamiltonian, in Physics applications) and Z is a normalization constant (a partition function). These q-exponential distributions can be derived, in an analogous way as Jaynes' method of maximum entropy [1], from maximization of a generalized, non-extensive entropy [2],

$$
\begin{equation*}
S_{q}=k_{B} \frac{1}{q-1}\left(1-\int d \vec{x} P(\vec{x} \mid R)^{q}\right) \tag{3}
\end{equation*}
$$

known as Tsallis entropy, subject to appropriate constraints fixing the expected energy. In the limit $q \rightarrow 1, S_{q}$ reduces to the usual Shannon-Gibbs entropy

$$
\begin{equation*}
S=-k_{B} \int d \vec{x} P(\vec{x} \mid R) \ln P(\vec{x} \mid R) \tag{4}
\end{equation*}
$$

and Eq. 1 recovers the Boltzmann-Gibbs distribution,

$$
\begin{equation*}
P(\vec{x} \mid R)=\frac{1}{Z} \exp (-\beta H(\vec{x})) \tag{5}
\end{equation*}
$$

There is no constructive method to obtain q from a given set of observed states \vec{x} (or measurements of H), and the usual route is to accumulate an histogram to approximate P (or the cumulative distribution function associated with P) and use nonlinear least-squares methods to fit q. Recently, a maximum likelihood method has been proposed [3].

In this work we present a simple estimation formula for the q index in a q-exponential distribution, with potential applications in numerical simulations of non-extensive systems.

DERIVATION

We will only consider the case $q \leq 1$, as this ensures the correct normalization of P. In fact, without this condition the theory has been shown to be internally inconsistent [4].
We can always express Eq. 1 as a canonical distribution

$$
\begin{equation*}
P(\vec{x} \mid \beta, q) \propto \exp (-\tilde{H}(\vec{x} ; \beta, q)), \tag{6}
\end{equation*}
$$

with a new fictitious Hamiltonian $\tilde{H}(\vec{x} ; \beta, q)$, defined as

$$
\begin{equation*}
\tilde{H}(\vec{x} ; \beta, q)=-\ln \Theta(1-(1-q) \beta H(\vec{x}))-\frac{1}{1-q} \ln (1-(1-q) \beta H(\vec{x})) . \tag{7}
\end{equation*}
$$

Now we can use the recently proposed conjugate variables theorem (CVT) [5], which is a convenient relationship between averages for a canonical distribution, generalizing the equipartition theorem and hypervirial theorems. For the canonical distribution of Eq. 5, CVT implies

$$
\begin{equation*}
\langle\nabla \cdot \vec{v}\rangle=\beta\langle\vec{v} \cdot \nabla H(\vec{x})\rangle . \tag{8}
\end{equation*}
$$

Due to the way we defined the new Hamiltonian \tilde{H} (Eq. 6) the corresponding fictitious Lagrange multiplier has a value of 1 , and CVT holds as

$$
\begin{equation*}
\langle\nabla \cdot \vec{v}\rangle=\langle\vec{v} \cdot \nabla \tilde{H}(\vec{x} ; \beta, q)\rangle . \tag{9}
\end{equation*}
$$

Substituting the definition of \tilde{H} to put it in terms of the original Hamiltonian we obtain

$$
\begin{equation*}
\langle\nabla \cdot \vec{v}\rangle=\beta(1-q)\left\langle\frac{\delta(1-(1-q) \beta H) \vec{v} \cdot \nabla H}{\Theta(1-(1-q) \beta H)}\right\rangle+\beta\left\langle\frac{\vec{v} \cdot \nabla H}{1-(1-q) \beta H}\right\rangle, \tag{10}
\end{equation*}
$$

and we note the first term of the right-hand side vanishes for $q \leq 1$, as the probability in Eq. 1 is zero on the hypersurface imposed by the delta function. We finally arrive at

$$
\begin{equation*}
\langle\nabla \cdot \vec{v}\rangle=\beta\left\langle\frac{\vec{v} \cdot \nabla H}{1-(1-q) \beta H}\right\rangle, \tag{11}
\end{equation*}
$$

from which a system of equations can be obtained for q and β by replacing different choices of the (arbitrary) \vec{v} vector field (the only requirement being that every choice of \vec{v} is differentiable). We can improve readability by using the substitution

$$
\begin{equation*}
\vec{v}=(1-(1-q) \beta H) \vec{\omega}, \tag{12}
\end{equation*}
$$

leading to the more familiar form

$$
\begin{equation*}
\langle\nabla \cdot \vec{\omega}\rangle=\beta[\langle\vec{\omega} \cdot \nabla H\rangle+(1-q)\langle\nabla \cdot(H \vec{\omega})\rangle] . \tag{13}
\end{equation*}
$$

In this form, the first term is the usual (canonical) CVT, and the extra "non-extensive" term vanishes in the limit $q \rightarrow 1$. Using $\vec{\omega}=g(\vec{x}) \vec{\chi} /(\vec{\chi} \cdot \nabla H)$, we get

$$
\begin{equation*}
\langle\hat{\beta} g\rangle+\left\langle\frac{\vec{\chi} \cdot \nabla g}{\vec{\chi} \cdot \nabla H}\right\rangle=\beta\left[\langle g\rangle+(1-q)\left(\langle\hat{\beta} H g\rangle+\left\langle\frac{\vec{\chi} \cdot \nabla(g H)}{\vec{\chi} \cdot \nabla H}\right\rangle\right)\right], \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\beta}=\nabla \cdot\left(\frac{\vec{\chi}}{\vec{\chi} \cdot H}\right) \tag{15}
\end{equation*}
$$

is the most general estimator for the inverse temperature [6, 7]. Two particular cases easily yield the desired system of equations. For simplicity we choose $g=1$ and $g=H$, which gives

$$
\begin{equation*}
\langle\hat{\beta}\rangle=\beta[1+(1-q)(1+\langle\hat{\beta} H\rangle)] \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\langle\hat{\beta} H\rangle+1=\beta\left[\langle H\rangle+(1-q)\left(\left\langle\hat{\beta} H^{2}\right\rangle+2\langle H\rangle\right)\right] . \tag{17}
\end{equation*}
$$

Combining Eqs. 16 and 17 we finally arrive at an expression for $1-q$ (which is of course not unique) depending only on microscopical averages, namely

$$
\begin{equation*}
1-q=\frac{\langle\hat{\beta}\rangle\langle H\rangle-\langle\hat{\beta} H\rangle-1}{(1+\langle\hat{\beta} H\rangle)^{2}-\langle\hat{\beta}\rangle\left(2\langle H\rangle+\left\langle\hat{\beta} H^{2}\right\rangle\right)} \tag{18}
\end{equation*}
$$

This expression, along with Eq. 13 constitutes our main result. Once q is computed using this formula, then β can be computed using either Eq. 16 or 17.
For a non-extensive Hamiltonian with kinetic degrees of freedom,

$$
\begin{equation*}
H(\vec{x}, \vec{p})=K(\vec{p})+\Phi(\vec{x})=\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m_{i}}+\Phi(\vec{x}) \tag{19}
\end{equation*}
$$

(where K is the kinetic energy) such as the HMF (Hamiltonian mean field) model [8], we already have a widely used estimator for the inverse temperature, the kinetic estimator $\hat{\beta}_{K}$ defined as

$$
\begin{equation*}
\hat{\beta}_{K}=\frac{3 N}{2 K}=\frac{1}{k_{B} T_{K}} \tag{20}
\end{equation*}
$$

which is nothing but the typical formula used in molecular dynamics simulations,

$$
\begin{equation*}
\frac{3}{2} N k_{B} T_{K}=\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m_{i}} . \tag{21}
\end{equation*}
$$

Note that for the Boltzmann-Gibbs case,

$$
\begin{equation*}
\langle\delta \hat{\beta} \delta H\rangle=\langle\hat{\beta} H\rangle-\langle\hat{\beta}\rangle\langle H\rangle=-1 \tag{22}
\end{equation*}
$$

and then from Eq. 18 we recover the fact that $1-q=0$.

APPLICATIONS

The q-Gaussian Distribution

The non-extensive analog of the ubiquitous Gaussian distribution is the so-called q-Gaussian distribution. It has the form

$$
\begin{equation*}
P(x \mid q, \mu, \sigma)=\frac{1}{Z} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2} ; q\right) \tag{23}
\end{equation*}
$$

which is a particular case of Eq. 1 with

$$
\begin{array}{r}
H(x)=\frac{(x-\mu)^{2}}{2} \\
\beta=1 / \sigma^{2} . \tag{25}
\end{array}
$$

Using the one-dimensional version of Eq. 13,

$$
\begin{equation*}
\left\langle\omega^{\prime}(x)\right\rangle=\beta\left[(2-q)\left\langle\omega H^{\prime}\right\rangle+(1-q)\left\langle\omega^{\prime} H\right\rangle\right] . \tag{26}
\end{equation*}
$$

and providing two different choices of $\omega(x)$ we can construct a system of equations for β and q. First we use $\omega(x)=(x-\mu) / 2$, obtaining

FIGURE 1. Preset and estimated values of q for $\mu=20, \sigma=5$ and q between 0.85 and 1 . The straight solid line represents the perfect estimation. Filled circles are the averages over 10 different realizations of the numerical experiment for each simulated value of q, with a dispersion indicated by the error bars.

$$
\begin{equation*}
\beta\langle H\rangle(2+3(1-q))=1 \tag{27}
\end{equation*}
$$

Then, for $\omega(x)=\frac{(x-\mu)^{3}}{4}$, we get

$$
\begin{equation*}
\beta\left\langle H^{2}\right\rangle\left(1+\frac{5}{2}(1-q)\right)=\frac{3}{2}\langle H\rangle . \tag{28}
\end{equation*}
$$

Combining Eqs. 27 and 28 we finally obtain

$$
\begin{equation*}
1-q=\frac{1}{3}\left(\frac{4\left\langle H^{2}\right\rangle}{5\left\langle H^{2}\right\rangle-9\langle H\rangle^{2}}-2\right) \tag{29}
\end{equation*}
$$

Figure 1 shows the numerical evaluation of Eq. 29 using data sampled from different q-Gaussian distributions (with $\mu=20, \sigma=5$ and q ranging from 0.85 to 1) by means of a Metropolis-Hastings [9] procedure. The burning time was 5×10^{5} steps and the samples for averaging were taken every 100 steps for a total of 1×10^{4} samples.

CONCLUDING REMARKS

We have derived microscopic expressions for the q index appearing in q-exponential (Tsallis) distributions with $q \leq 1$, both in the case of an arbitrary Hamiltonian (here the estimation formula involves estimators $\hat{\beta}$ for the inverse temperature) and for the case of a q-Gaussian distribution. Numerical experiments on the q-Gaussian case demonstrate the accuracy of the formula.

ACKNOWLEDGMENTS

SD acknowledges partial support from FONDECYT 3110017.

REFERENCES

1. E. T. Jaynes, Physical Review 106, 620-630 (1957).
2. C. Tsallis, J. Stat. Phys. 52, 479-487 (1988).
3. C. R. Shalizi, Maximum likelihood estimation for q-exponential (Tsallis) distributions (2007), arXiv:math/0701854v2.
4. J. F. Lutsko, and J. P. Boon, EPL 95, 20006 (2011).
5. S. Davis, and G. Gutiérrez, Phys. Rev. E 86, 051136 (2012).
6. H. H. Rugh, Phys. Rev. Lett. 78, 772-774 (1997).
7. G. Rickayzen, and J. G. Powles, J. Chem. Phys. 114, 4333-4334 (2001).
8. A. Pluchino, V. Latora, and A. Rapisarda, Physica D 193, 315-328 (2004).
9. D. Gamerman, and H. F. Lopes, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Taylor and Francis, 2006.
