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1 Introduction Metal-organic tri-halides perovskites 
are semiconductor materials that have revolutionized the 
research of thin film solar cells. With the first prototypes 
demonstrated six years ago [1], record cell efficiencies 
have surpassed the barrier of 20% [2, 3]. Methyl-
ammonium (MA = CH3NH3

+) lead iodide (MAPbI3) is one 
of the most studied members of this family, and it has been 
applied as photon absorber and charge transporting mate-
rial [4, 5]. MAPbI3 has three crystal structures (orthorhom-
bic, tetragonal and cubic, in order of increasing tempera-
ture) [6–9]. The three phases differ by small changes of the 
lattice vectors, rotations of the characteristic PbI6 octahedra, 
and the orientation of the CH3NH3

+ cations, which is sub-
ject to dynamic disorder in the tetragonal and cubic phases 
[10].  

The electronic band structure of MAPbI3 has been ex-
plained on the basis of generalized density functional the-
ory (hybrid functionals) or Green functions GW calcula-
tions, in both cases including the spin–orbit coupling [11–
13]. For the orthorhombic phase, the valence band maxi-
mum (VBM) and the conduction band minimum (CBM) 
are located at the Γ-point corresponding to the 48-atoms 

unit cell, and the fundamental gap is 1.68 eV [14]. Both the 
VBM and CBM are doubly degenerated, with nearly sym-
metric effective mass tensors.  

Exciton peaks are observed in the light absorption 
spectra at low temperature [15–17], just below the inter-
band absorption edge, or melded with it, depending on the 
temperature. According to the Wannier–Mott model [18, 
19], the exciton is similar to a hydrogen atom with the pro-
ton and electron masses replaced by the hole and electron 
effective masses, and the Coulomb interaction is screened 
by a dielectric constant ε. Therefore, the exciton binding 
energy and the Bohr radius are 4 2 2/2Ry eμ ε=  and 

2 2
ex / ,a eε μ=  where e h e h/( )m m m mμ = +  is the reduced 

electron–hole mass.  
One distinct feature of MAPbI3 is the large difference 

between the static dielectric constant ε0 and the high fre-
quency (ion-clamped) constant ε∞, i.e., for frequencies 
higher than those of the phonon absorption. Values of ε∞ in 
the range 4.5–6.5 have been calculated [11–13, 20], while 
values close to 25 have been estimated for ε0 [12, 20]. Such 
difference is larger than in traditional inorganic semicon-
ductor and should cause important polaron effects, such as  

The excitons in the orthorhombic phase of the perovskite
CH3NH3PbI3 are studied using the effective mass approxima-
tion. The electron–hole interaction is screened by a distance-
dependent dielectric function, as described by the Haken po-
tential or the Pollmann–Büttner potential. The energy spec-
trum and the eigenfunctions are calculated for both cases. The
results show that the Pollmann–Büttner model, using the cor-
responding parameters obtained from ab initio calculations,
provides better agreement with the experimental results. 
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Table 1 Parameters defining the polarons in MAPbI3. 

Dielectric constants  –ε•   – 0/ε ε•   
 –5.321  –0.2362  
LO phonon energy  – LOE    
 –38.5 meV3  
Coupling constants  – eα   – hα   
 –1.18  –1.28  
Bare carrier masses  – e 0/m m   – h 0/m m   
 –0.1901  –0.2251  
Polaron masses  – e 0*/m m   h 0*/m m   
 –0.228  –0.273  
Polaron radii  – el   – hl   
 –22.8 Å  –21.0 Å  
Polaron shift  – e

pED   – h
pED   

 –45.3 meV1 –49.3 meV1 
1 Ref. [13]. 2 Ref. [20]. 3 Ref. [30].  

 
the effective mass and gap renormalization, as well as 
nonhydrogenic exciton states. For the latter, immediately 
arises the question whether the screening constant ε should 
be the static dielectric constant ε0 or the high frequency ε∞. 
Using the values listed in Table 1, the static and the  
high frequency dielectric constants lead to very different 
values of the exciton binding energy 0 2 8 meVRy = .  and 

50 meV,Ry• =  respectively. Such different energies lead 
to different conclusions with respect to exciton dissociation 
due to thermal excitation, as well as to different interpreta-
tion of luminescence and transport properties.  

In fact, the difference between 0ε  and •ε  expresses the 
electric polarization associated to the optical phonons and 
the electron–phonon interaction. The stationary states are 
coupled states of electronic and the vibrational phonon 
field. The quantum calculation of these coupled states is 
beyond the current capabilities of ab initio methods. Model 
Hamiltonians [21–23] allow one to map the coupled elec-
tron–phonon excitations into effective electronic states, 
and to obtain the energies of stationary states. Even when 
simplifying approximations are inherent in the models, 
they can provide a criterion on the relevant dielectric 
screening constants. In this Letter, we apply the model 
Hamiltonians of Haken [21, 22] and that of Pollmann and 
Büttner [23] to the exciton spectrum. This formalism is ap-
plicable only to the low temperature orthorhombic phase 
because in the tetragonal phase the static dielectric con-
stant increases strongly, associated to dynamical reorienta-
tion of CH3NH3

+ cations, and the exciton effects practically 
disappear [24–28]. This formalism cannot be applied to 
permanent rotating dipoles. Also, the orientation dynamics 
is much slower than the ionic polarization and its effect 
upon the excitons may depend on the exciton lifetime [29].  

 
2 Theoretical models The strengths of the electron-

optical phonon and hole-optical phonon interactions are 
given by the coupling constants  

4 2 2
e,h e,h LO/2 *m e Eα ε= , (1) 

where LOE  is the energy of the longitudinal optical phonon. 
This model was developed for simple crystals that display 
one single LO phonon branch. For this application, we 
have chosen LOE  as the shift of the main peak in the 
MAPbI3 Raman spectrum [30]. The ionic screening pa-
rameter appearing in Eq. (1) is 01/ 1/ 1/ .*ε ε ε•= -   

For transport properties, relevant after exciton dissocia-
tion, polaron masses must be considered rather than the 
bare electronic masses computed with fixed ions. They can 
be estimated using the Fröhlich’s continuum theory of the 
large polaron [31], which predicts  

e,h
e,h e,h* 1

6
m m

αÊ ˆ= + .Á ˜Ë ¯
 

The polaron bands undergo an additional shift given by 
e,h

e,h LO .pE EαD = -  With the data of Table 1, this leads to a 
reduction of the electronic band gap by 95 meV.  

The Haken (H) model [21, 22] describes two interact-
ing polarons, each one with a radius much smaller than the 
exciton effective radius, and expresses the effective poten-
tial for the electron–hole interaction as  

( )e h

2 2
/ /

H
0

( ) e e
2 *

r l r le eV r
r rε ε

- -= - - + . (2) 

Here 2
e,h e,h LO/2l m E=  are the electron- and hole-

polaron radii determined using bare band electron and hole 
effective masses. The polaron effective mass parameters 
must be used in the kinetic energy terms of the Hamilto-
nian [32].  

A refined model, proposed by Pollmann and Büttner 
[23] (PB), expresses the electron–hole interaction potential 
as  

h e

2 2
/ /eh

PB
0

( ) e e
*

r l r lme e mV r
r r m mε ε

- -Ê ˆ= - - - ,Ë ¯D D
 (3) 

with h e .m m mD = -  This potential was derived assuming  
that the polaron lengths e,hl  are much smaller than the ef-
fective exciton radius, which entered as a variational pa-
rameter in the original calculations [23]. The bare band 
electron and hole masses must be used in the kinetic en-
ergy terms of the PB Hamiltonian.   

In the present work, the exciton energies are obtained 
solving numerically the radial Schrödinger equation for the 
relative coordinate wave function of the exciton ( )rΦ   

( ) ( )2

2 2 2
1d 2 d 2 ( ) 0

dd
l lE V r

r rr r
Φ Φ μ Φ+Ê ˆ+ + - - = ,Á ˜Ë ¯  (4) 

where ( )V r  is the electron–hole interaction potential (Cou-
lomb, H, or PB), l  is the azimuthal quantum number, of 
which we only consider 0l =  that are the optically active 
states. The Eq. (4) for 0l =  has been solved integrating the 
equation starting from 0r =  with the conditions (0) 0,Φ >  

(0) 0=¢Φ  and imposing c( ) 0,rΦ =  where cr  is a cutoff ra-
dius sufficiently large to mimic the boundary conditions at 
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infinity. We have used exciton atomic units 0a  and 0Ry  for 
the radius and energy, respectively. The cutoff radii cr  are 
established solving the equation for the Coulomb potentials 
and comparing the numerical energies with the known ex-
act solutions, i.e. 21/ .n-  The radial wave functions func-
tions are normalized to unity.  

The optical oscillator strengths are defined as  

20

0

2 ˆ| | |0 |n n
n

mf Ψ
ω ,

= · ◊ Ò ,ξ v  (5) 

where 0m  is the free electron mass, 0 g*n nE Eω , = +  is the 
transition energy, |0Ò  and | nΨ Ò  are the ground and excited 
states of the crystal, respectively, and ˆˆ [ ]/i H= ,v r  is the 
velocity operator [33]. g*E  is the renormalized gap (with 
the polaron shift), and nE  are the eigenvalues of Eq. (4). 
We shall approximate nf  by the expression for pure exci-
tons, i.e., neglecting the phonon coupling. We obtain the 
simplified expression (see the Supporting Information)  

2f u
3

0 0

4 | (0)|cv
n n

n

Uf
a
Ω Φ

ω
. .

,

= . (6) 

In the above expression, f u. .Ω  is the normalization volume 
of the center-of-mass part of the exciton envelope wave 
function, which we consider as the volume of one formula 
unit, i.e., one fourth of the unit cell volume 952.5 Å3. With 
this convention, the oscillator strength is equivalent to the 
values reported elsewhere [14, 16]. Using first principles 
calculations (see the Supporting Information) we have cal-
culated the parameter  

2
0 00 ˆ| | | |

1 706 eV
2 3

c v
cv

cv x y z

u uvmU α

α = , ,

· Ò
= = . .Â Â  (7) 

The factor 1/3 and the sum in α correspond to isotropic av-
erage of the crystal orientations. 0vu  and 0cu  are the Bloch 
functions of the valence band maximum and conduction 
band minimum, which in this case are both doubly degen-
erate.  
 

3 Results and discussion Both the H and PB poten-
tials behave like a Coulomb potential for very large dis-
tance e h( )r l l,  or very short distances e h( ),r l l,  
screened by the low and high frequencies dielectric con-
stants, respectively. Figure 1 shows in logarithmic scale, 
the limiting Coulomb potentials screened by 0ε  and .ε•  
These are represented by the straight lines, enclosing the H 
and PB potentials, that interpolate the limiting cases. Hori-
zontal lines represent the eigenenergies of the exciton rela-
tive motion. The axes in the figure are in units of static 
(fully screened) exciton radius and 2 2

0 0 /a eε μ=  and exci-
ton energy 4 2 2

0 0/2 .Ry e= μ ε  In these units, the static Cou-
lomb potential is given by 2/r-  and the exciton eigenener-
gies are 0 21/ .nE n= -  The Coulomb potential and the  
hydrogenic energies defined by •ε  are 2 2/ ,n rE nε• = -  where 

0 / .rε ε ε•=  For the parameters of MAPbI3 ( 4 24),r = .ε  the  
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Figure 1 H and PB potentials compared with the Coulomb po-
tential screened by 0ε  and .ε•  Also shown are the eigenenergies 
for each potential. 

 

lowest exciton levels are H 11 26nE = - .  and PB 8 65nE = - .  for 
the H and PB potentials (see Table 1 in Supporting Infor-
mation). These values represent a significant correction  
to either 0

1 1E = -  or 1 18.E• = -  The excited exciton ener-
gies of H and PB potentials approach the values 21/n-  for 
high n.  

In order to compare the energies H
1E  and PB

1E  one must 
consider that the reduced mass μ  in 0Ry  is defined either 
by the polaron reduced masses or the bare reduced masses 
in the first and second model, respectively. In absolute 
units, H

1 37 meVE = -  and PB
1 24 meV.E = -  Is seems that 

the PB value is in better agreement with the experimental 
values near 19 meV [28, 34].   

According to Eq. (6), the oscillator strengths depend  
on the potential model only through (0).nΦ  Figure 2  
shows the values of 3 2π | (0)|nn Φ  (see also Table 1 in  
Supporting Information). For the 0 -hydrogenicε  poten- 
tial, 2 3| (0)| 1/π .n nΦ =  Therefore, 3 2π | (0)|nn Φ  is the oscilla-
tor strength relative to the hydrogenic one. For the 

-hydrogenicε•  potential, 3 2 3π | (0)| .n rn Φ ε=  The 1n =  state 
approaches the later limit. For higher levels, the oscillator 
strengths become proportional to the hydrogenic oscillator 
strengths. The proportionality constant is fitted to 

H 4 282β = .  and PB 4 214β = .  in each case. The fitting func-
tion was 0( ) /( ),f n n nβ γ= + -  and the fitted β  are stable 
for any subset of data with 7.n >  Let us note that  

0εβ
ε•

. (8) 

The 1n =  oscillator strength, according to Eq. (6), is 
0.013 (PB model). This is close to the value 0.02 reported 
by Ishihara [14]. This parameter provides another argu-
ment against the 0 -hydrogenicε  model, for which an oscil-
lator strength ∼64 times smaller is predicted.  
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Figure 2 Oscillator strengths of the -hydrogenic,ε•  Haken (H) 
and Pollman–Büttner (PB) excitons relative to the strengths of 
hydrogenic exciton determined by 0.ε  

 
The second exciton level is only 2.7 meV (H) or 

1.3 meV (PB) below the edge of the continuum spectrum, 
and their oscillator strengths are one order of magnitude 
smaller than for the main line (n = 1), making these transi-
tions practically undetectable in the optical spectra. Higher 
energies approach to the sequence 2

g 0* / ,E Ry n-  as can be 
seen in Table 1 of Supporting Information. This result, to-
gether with the approximation of the energies by the se-
quence 2

g 0* / ,E Ry n-  leads to to a constant absorption 
spectrum near the band gap energy similar to the case of 
hydrogenic exciton [35, 36],  

2

g 3
g 0 0 0

4π( *)
*

cv

r

e UE
E n cm a Ry

= ,βα  (9) 

where rn  is the refraction index and can be approximated 
by .ε•  Using the material parameters of MAPbI3, 

4 1
g( ) 3 1 10 cm .Eα -. ¥∼   This value is enhanced with re-

spect to the hydrogenic model by a factor 0 / .ε ε•   
To interpret the absorption experiments and to deter-

mine the band gap, one needs to know whether the onset of 
the continuous absorption spectrum corresponds to the ex-
citon continuum spectrum, or to the accumulation of dis-
crete lines below the band gap. In other words, what is the 
energy range of constant absorption coefficient given by 
Eq. (9). Considering that the higher exciton levels are 
within 2.7 meV of the continuum, and that the exciton ab-
sorption spectrum is dominated by the fundamental state, 
one can conclude that the band gap coincides with the ab-
sorption threshold after filtering the first exciton peak. On 
the other hand, the polaronic effect downshifts the gap by 
95 meV. Therefore, the measured gap 1.68 eV should be 
understood as an electronic gap of 1.78 eV decreased by 
the polaron shift.  

Several kinds of estimations of the exciton binding  
energy in MAPbI3 have been reported. The first method 

was employed by Hirasawa et al. [15], and repeated later 
with improved accuracy by Tanaka et al. [16]. They meas-
ured the exciton diamagnetic coefficient in magneto-
absorption spectra, and related the measurements with the 
binding energy in the framework of the hydrogenic model 
with the high frequency dielectric constant. With this 
model, Tanaka et al. determined a binding energy of 
50 meV. The use of the high frequency dielectric constants 
was a choice of the model, and not determined by the ex-
periments.  

The second method has been applied by Sun et al. [34]. 
They obtained the binding energy (19 meV) by fitting the 
photoluminescence intensity as a function of temperature 
with an Arrhenius equation, not using any model of the ex-
citon states. Huang and Lambrecht [37] have argued, in a 
study of cesium tin halide perovskites, that the photolumi-
nescence temperature dependence just gives information 
on the free exciton linewidth or the binding energies of 
bound excitons, but not on free excitons. However, Even  
et al. [27] fitted the absorption spectrum using the Wan-
nier–Mott exciton model and obtained a similar value for 
the binding energy, and reported an effective dielectric 
constant eff 11.ε =  This value of the dielectric constants, 
together with the assumed reduced mass 00 16m.  [27] 
means a binding energy of 19 meV. Another method inde-
pendent of the dielectric function has been used by Miyata 
et al. [28], who performed magneto-absorption experi-
ments with very high magnetic fields, determining a value 
of 16 2 meV.±   It is interesting that Miyata et al. were able 
to detect the 2s exciton state for high magnetic field and 
extrapolated a 1s – 2s difference of 15 meV at low mag-
netic field. Henceforth, assuming the hydrogenic model, 
they estimated the binding energy in 20 meV. However, 
extrapolating the Landau levels of the free exciton spec-
trum they obtained the precise value of 16 meV. This ob-
servation agrees with our result that the 2s state is within 
2.7 meV of the free exciton edge.  

We wish to stress that we have not fitted any parameter 
in this work, which would bring the exciton binding ener-
gies in closer agreement with the recent experimental  
results. The parameters with larger uncertainty are the di-
electric constants and the LO phonon energy. The only 
available experimental value of 6 5ε• = .  [15] is larger than 
the ab initio value used here and that value would reduce 
the calculated binding energy. The measurement of ε•  is 
rather old, with few published details, and a new determi-
nation for present-day thin films would be welcomed. The 
LO phonon energy LOE  has been chosen from the more 
prominent peak in the calculated Raman spectrum of 
MAPbI3 [30], which is close to LO phonon energies in  
II–VI and III–V semiconductors. As mentioned above, the 
model Hamiltonians were developed assuming a unique 
LO phonon energy. The Raman spectrum of MAPbI3 
shows bands at lower wave numbers. Using and average 
energy of the Raman active peaks, which do not have nec-
essarily LO character, may lead to lower exciton binding 
energy. An extension of the PB Hamiltonian to include 
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several LO phonon branches would be a better founded 
approach.  

In summary, we have calculated the exciton binding 
energies and oscillator strengths using two model Hamilto-
nians of the exciton–phonon coupled system. The Poll-
mann–Büttner model Hamiltonian gives a binding energy 
in good agreement with recent experimental determina-
tions. The calculated oscillator strength of the main exciton 
line agrees with the value estimated from experiments, 
while the strengths of higher transitions are much smaller.  

Supporting Information Additional supporting informa-
tion may be found in the online version of this article at the pub-
lisher’s website.  

Acknowledgements We acknowledge computer time 
from the Jülich Supercomputing Centre (JSC) under the MOHP-
SOPHIA project, and from the Madrid Supercomputing and 
Visualization Center (CeSViMa). We acknowledge support  
from FONDECYT Grant. No. 1150538 and project BOOSTER 
(ENE2013-46624-C4-2-R). We thank J. C. Conesa, P. Palacios, 
and C. Trallero-Giner for interesting discussions that motivated 
this work.  

References 
  [1] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. 

Chem. Soc. 131, 6050–6051 (2009).  
  [2] 2015, NREL chart on record cell efficiencies.  
  [3] M. Jacoby, Chem. Eng. News 92, 21 (2014).  
  [4] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, 

M. K. Nazeeruddin, and M. Grätzel, J. Am. Chem. Soc. 
134(42), 17396–17399 (2012).  

  [5] N. G. Park, J. Phys. Chem. Lett. 4(15), 2423–2429 (2013).  
  [6] O. Knop, R. E. Wasylishen, M. A. White, T. S. Cameron, 

and M. J. M. van Ooort, Can. J. Chem. 68, 412–422 (1990).  
  [7] T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. 

Mhaisalkar, M. Graetzel, and T. J. White, J. Mater. Chem. 
A 1, 5628–5641 (2013).  

  [8] C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, 
Inorg. Chem. 52, 9019–9038 (2013).  

  [9] Y. Kawamura, H. Mashiyama, and K. Hasebe, J. Phys. Soc. 
Jpn. 71, 1694–1697 (2002).  

[10] R. E. Wasylishen, O. Knopp, and J. B. Macdonald, Solid 
State Commun. 56, 581–582 (1985).  

[11] P. Umari, E. Mosconi, and F. De Angelis, Sci. Rep. 4, 4467 
(2014).  

[12] F. Brivio, K. T. Butler, A. Walsh, and M. van Schilfgaarde, 
Phys. Rev. B 89, 155204 (2014).  

[13] E. Menéndez-Proupin, P. Palacios, P. Wahnón, and J. C. 
Conesa, Phys. Rev. B 90, 045207 (2014).  

[14] T. Ishihara, J. Lumin. 60–61, 269–274 (1994).  
[15] M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, and N. Miura, 

Physica B 201, 427–430 (1994).  
[16] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, and 

N. Miura, Solid State Commun. 127, 619–623 (2003).  
[17] V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. 

Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, 
and A. Petrozza, Nature Commun. 5, 3586 (2014).  

[18] G. Wannier, Phys. Rev. 52, 191–197 (1937).  
[19] R. Knox, Theory of excitons, Solid State Physics: Supple-

ment 5 (Academic Press, 1963).  
[20] F. Brivio, A. B. Walker, and A. Walsh, APL Materials 1, 

042111 (2013).  
[21] H. Haken, Z. Phys. 146, 527–554 (1956).  
[22] H. Haken, Fortschr. Phys. 6, 271–334 (1958).  
[23] J. Pollmann and H. Büttner, Phys. Rev. B 16, 4480–4490 

(1977).  
[24] N. Onoda-Yamamuro, T. Matsuo, and H. Suga, J. Phys. 

Chem. Solids 53, 935–939 (1992).  
[25] Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Mere-

dith, Nature Photon. 9, 106–112 (2015).  
[26] J. M. Frost, K. T. Butler, and A. Walsh, APL Materials 2(8), 

081506 (2014).  
[27] J. Even, L. Pedesseau, and C. Katan, J. Phys. Chem. C 118, 

11566–11572 (2014).  
[28] A. Miyata, A. Mitiouglu, P. Plochocka, O. Portugall, J. T. 

W. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, 
Nature Phys. 11, 582–587 (2015).  

[29] S. T. A. G. Melissen, F. Labat, P. Sautet, and T. Le Bahers, 
Phys. Chem. Chem. Phys. 17, 2199–2209 (2015).  

[30] C. Quarti, G. Grancini, E. Mosconi, P. Bruno, J. M. Ball,  
M. M. Lee, H. J. Snaith, A. Petrozza, and F. De Angelis,  
J. Phys. Chem. Lett. 5, 279–284 (2014).  

[31] J. T. Devreese and A. S. Alexandrov, Rep. Prog. Phys. 72, 
066501 (2009).  

[32] H. Haken, J. Phys. Radium 17, 826–828 (1956).  
[33] R. del Sole and R. Girlanda, Phys. Rev. B 48, 11789–11795 

(1993).  
[34] S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, 

G. Xing, T. C. Sumbce, and Y. M. Lam, Energy Environ. 
Sci. 7, 399–407 (2014).  

[35] G. Grosso and G. Pastori-Parravicini, Solid State Physics, 
1st edition (Academic Press, San Diego, 2000).  

[36] R. J. Elliot, Phys. Rev. 108, 1384–1389 (1957).  
[37] L. Y. Huang and W. R. L. Lambrecht, Phys. Rev. B 88, 

165203 (2013). 

 


