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Abstract
The investigation of the role of interactions in magnetic wire arrays is
complex and often involves substantial simplifications. In this paper
analytical expressions taking into consideration the geometry of the wires and
dipolar interactions between them have been obtained. An expansion of these
terms, at first order, can be easily evaluated and shows a good agreement with
the total expression for the energy. The extent of the interwire magnetostatic
coupling has also been investigated, and it is shown that the number of wires
required to reach a size independent magnetic state in the array strongly
depends on the relative magnetic orientation of the wires.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

During the last decade, regular arrays of magnetic nanoparti-
cles have been deeply investigated. Besides the basic scientific
interest in the magnetic properties of these systems, there is ev-
idence that they might be used in the production of new mag-
netic devices [1, 2]. Different geometries have been consid-
ered, including dots, rings, tubes and wires. Recent studies on
such structures have been carried out with the aim of determin-
ing the stable magnetized state as a function of the geometry
of the particles [3–5]. In particular, the study of highly or-
dered arrays of magnetic wires with diameters typically in the
range of tens to hundreds of nanometers is a topic of growing
interest [6–9]. This is a consequence of the development of ex-
perimental techniques that lead to fabrication in a controllable
and ordered way of such arrays [10, 11]. The high ordering
of the array, together with the magnetic nature of nanowires,
gives rise to outstanding cooperative properties of fundamental
and technological interest [12].

Bi-stable nanowires are characterized by square-shaped
hysteresis loops defined by the abrupt reversal of the

magnetization between two stable remanent states [13, 14]. In
such systems, effects of interparticle interactions are in general
complicated by the fact that the dipolar fields depend upon the
magnetization state of each element, which in turn depends
upon the fields due to adjacent elements. Therefore, the
modeling of interacting arrays of nanowires is often subject to
strong simplifications, for example, modelling the wire using a
one-dimensional modified classical Ising model [14, 15]. Zhan
et al [16] used the dipole approximation including additionally
a length correction. Velázquez and Vázquez [17, 18]
considered each microwire as a dipole, in such a way that
the axial field generated by a microwire is proportional
to its magnetization. Nevertheless, this model is merely
phenomenological since the comparison of experimental
results with a strictly dipolar model shows that the interaction
in the actual case is more intense. They have also calculated the
magnetostatic field and expanded it in multipolar terms [19],
showing that the non-dipolar contributions of the field are non-
negligible for distances considered in experiments. Recently,
the energy of magnetostatic interaction between two magnetic
elements of arbitrary shape was derived within the framework
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of a Fourier space approach by Beleggia et al [20, 21]. In
spite of the extended study of the dipolar interactions, a
detailed calculation of these interactions in arrays of magnetic
structures has not been presented yet. Also micromagnetic
calculations [22, 23] and Monte Carlo simulations [24] have
been developed. However, these two methods permit us to
investigate arrays with just a few wires.

The purpose of this work is to investigate the magnetic
behavior of arrays of bi-stable ferromagnetic nanowires as a
function of the relative magnetic orientation of the interacting
wires, and the geometrical parameters involved. We start by
developing an analytical model for arrays which includes shape
anisotropy (or dipolar self-energy) of each wire as well as
the full long-range magnetostatic interaction within the array.
Our model goes beyond the dipole–dipole approximation and
leads us to obtain an analytical expression for the interaction
in which the lengths and radii of the wires are taken into
account. Using those expressions we developed Monte Carlo
simulations to investigate the hysteretic behavior of the array.

2. Continuous magnetization model

Geometrically, nanowires are characterized by their radius,
R, and length, L . The description of an array of N wires
based on the investigation of the behavior of individual
magnetic moments becomes numerically prohibitive. In order
to circumvent this problem we use a continuous approach
and adopt a simplified description in which the discrete
distribution of magnetic moments in each wire is replaced
with a continuous one, defined by a function M(r) such that
M(r)δV gives the total magnetic moment within the element of
volume δV centered at r. We recall that Etot is generally given
by the sum of three terms corresponding to the magnetostatic,
Edip, the exchange, Eex, and the anisotropy contributions. Here
we are interested in soft or polycrystalline magnetic materials,
in which case the anisotropy is usually disregarded [7].

The total magnetization can be written as M(r) =∑N
i=1 Mi(r), where Mi (r) is the magnetization of the i th

nanowire. In this case, the magnetostatic potential U (r)
splits up into N components, Ui (r), associated with the
magnetization of each individual nanowire. Then, the total
dipolar energy can be written as Edip = ∑N

i=1 Edip(i) +
∑N−1

i=1

∑N
j=i+1 Eint(i, j ), where

Edip(i) = μ0

2

∫

Mi(r) · ∇Ui(r) dv (1)

is the dipolar contribution to the self-energy of nanowire i th,
and

Eint(i, j ) = μ0

∫

Mi(r)∇U j (r) dv (2)

is the dipolar interaction between nanowires i and j . In
the dipolar contribution to the self-energy an additive term
independent of the configuration has been left out [25].

In this work we investigate bi-stable nanowires in which
case [25], Eex = ∑N

i=1 Eex(i) = 0. On the basis of this
assumption, the total energy of the array can be written as

Etot =
N∑

i=1

Eself(i) +
N−1∑

i=1

N∑

j=i+1

Eint(i, j ), (3)

where Eself(i) = Edip(i) is the dipolar self-energy of each wire,
and Eint(i, j ) is the dipolar interaction energy between wires
i th and j th.

2.1. Total energy calculation

We now proceed to the calculation of the energy terms in the
expression for Etot. Results are given in units of μ0 M2

0 V ,
i.e. Ẽ = E/μ0 M2

0 V , where V = π R2 L is the volume and
M0 is the saturation magnetization of each nanowire.

In order to evaluate the total energy, it is necessary to
specify the functional form of the magnetization for each
nanowire. We consider wires with an axial magnetization
defined by Mi (r) = M0σi ẑ, where ẑ is the unit vector parallel
to the axis of the nanowire and σi takes the values ±1, allowing
the wire i to point up (σi = +1) or down (σi = −1) along ẑ.

2.1.1. Self-energy of a nanowire. The reduced dipolar self-
energy has been calculated by Tandon et al [26] and takes the
form

Ẽself(i) = 1

2

(

1 + 8R

3π L
− F21

[

−4R2

L2

])

, (4)

where F21[x] = F21[−1/2, 1/2, 2, x] is a hypergeometric
function. Note that in equation (4) the energy of each wire
depends only on the ratio R/L . As an example, when we
consider a Ni wire with L = 1 μm, R = 20 nm and L/R = 50,
the self-energy is Eself = 19.45 eV.

2.1.2. Interwire magnetostatic coupling. The interaction
between two nanowires is obtained using the magnetostatic
field experienced by one of the wires due to the other so that
the final result reads

Ẽint(i, j ) = 2σiσ j

∫ ∞

0

dq

q2
J0

(
qSi j

L

)

J 2
1

(
q R

L

)

(1 − e−q),

(5)
where Jp is a Bessel function of the first kind and p order
and Si j is the center-to-center distance between the magnetic
nanowires i and j . The previous equation allows us to
write the interaction energy of two wires as Ẽint(i, j ) =
σiσ j Ẽint(Si j) = ±Ẽint(Si j), where the sign + (−) corresponds
to σi = σ j (σi �= σ j ).

Equation (5) has been previously obtained by Beleggia
et al (see equation (59) in [20]) considering a more general
approach based on Fourier transforms of the magnetization.

2.2. Results

2.2.1. Two-wire system. The general expression giving the
interaction between wires with axial magnetization is given by
equation (5). This expression has to be solved numerically.
However, wires that motivate this work [6–9] satisfy L/R � 1,
leading us to expand J1 as

J1(x) = x

2
− x3

16
+

∞∑

k=2

(−1)k(x/2)1+2k

k!�(k + 2)
. (6)

Then we can approximate equation (5) by

Ẽλ
int(Si j) = R2

2L Si j

∞∑

λ=1

gλ, (7)
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Figure 1. Energy of interaction between two identical nanowires
with parallel axial magnetization. The solid line (red online)
corresponds to the numerical integration of equation (5), the dashed
line (black) corresponds to the first-order approximation of
equation (7) and the dotted line (blue online) corresponds to the
second-order approximation of equation (7).

where λ indicates the order of the expansion. As an example,
the first and second terms in the sum are

g1 = 1 − 1

α1
(8)

and

g2 = R2

4S2
i j

(

1 − α2

α1

)

+ 9R4

64S4
i j

(

1 − α3

α1

)

, (9)

where α1 ≡
√

1 + L2/S2
i j , α2 ≡ (1 − 2L2/S2

i j)/α
4
1 and α3 ≡

(1+8L4/3S4
i j −8L2/S2

i j)/α
8
1 . Figure 1 illustrates the energy of

interaction between two identical nanowires with parallel axial
magnetization as a function of 2R/Si j . When the two wires
are in contact, 2R/Si j = 1; when they are infinitely separated,
2R/Si j = 0. In this figure the solid line represents the
numerical integration of the interaction energy, equation (5),
the dashed line is given by the first-order approximation of
this energy, equation (7), and the dotted line corresponds to the
second-order approximation. From this figure we can conclude
that the first term in the expansion in equation (7) gives a
very good approach to equation (5) for 2R/Si j � 0.6, and
L/R � 1. As an illustration, when we consider two Ni wires
with L = 1 μm, R = 20 nm and Si j = 100 nm, we obtain
Eint(Si j ) = 4.22 eV and E1

int(Si j ) = 4.18 eV.
In order to quantify the relative importance of the

interaction energy we calculated the ratio between the self-
energy and the magnetostatic interaction energy between two
identical nanowires,

η = Ẽint(Si j )

2Ẽself

. (10)

Figure 2 defines the geometry of the two-wire system for
which η = 0.2, 0.1, 0.01 and 0.001. From this figure we
observe a strong dependence of the interaction energy on the
geometry of the two-wire system. As an illustration, when we
consider two nanowires with L = 1 μm, R = 20 nm and

Figure 2. η values as a function of the geometry of the two-wire
system.

L/R = 50, if we look at an almost non-interacting regime,
η = 0.01, 2R/Si j = 0.068, and then the two wires have to be
at least 590 nm apart. For this geometry the interaction energy
is about 1% of the self-energy. However, for the same L and R,
if the wires are 58 nm apart (2R/Si j = 0.69), the interaction
energy is about 20% of the self-energy (η = 0.2).

2.2.2. Wire array. The focus of this work is on clarifying the
role of dipolar interactions in the magnetic behavior of a square
array of nanowires. With the previous relations for a two-wire
system, we are now in a position to investigate the effect of the
interwire magnetostatic coupling in the array. Calculations for
the total interaction energy Ẽ±

array(N) of the N = n × n square
array are shown in the appendix, and lead us to write

Ẽ±
array(N) = 2n

n−1∑

p=1

(n − p)(±1)p Ẽint(pd)

+ 2
n−1∑

p=1

n−1∑

q=1

(n − p)(n − q)(±1)p−q Ẽint(d
√

p2 + q2),

where + (−) refers to ferromagnetic (antiferromagnetic)
magnetic ordering of the nanowires in an array with nearest-
neighbor distance d, and Ẽint is the energy of interaction
between two identical magnetic elements of arbitrary shape. In
particular, for magnetic nanowires Ẽint is given by equation (5).
Note that in an array Si j is a function of d. In the
antiferromagnetic configuration the magnetizations of nearest-
neighbor nanowires point in opposite directions defining the
lowest energy state of the array [27]. Figure 3 illustrates the
behavior of W ±

array(N) = Ẽ±
array(N)/N as a function of N in

a ferromagnetic (solid line) and an antiferromagnetic (dashed
line) array. We consider an array of identical wires with
R = 20 nm and L = 1 μm and d = 50 nm. We can see
that a large number of wires (N ≈ 106), corresponding to a
sample of ≈0.01 mm2, is required for reaching convergence
of W +

array(N). However, in view of cancellations originating in
the different signs of the parallel and antiparallel interactions,
the antiferromagnetic configuration converges faster, requiring
only of the order of 102 wires and a sample of ≈1 μm2.

We also investigate, for the same wires (R = 20 nm
and L = 1 μm), the variation of the asymptotic value of

3
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Figure 3. W ±
array(N) (solid (black), ferromagnetic array; dashed

(blue), antiferromagnetic array) in a square array of identical wires
(R = 20 nm and L = 1 μm). We consider different numbers of
wires in the array and d = 50 nm. The scale for the
antiferromagnetic array is on the right.

Figure 4. Asymptotic values of the interaction energy in a square
array obtained with N = 106 (solid line, ferromagnetic array) and
N = 102 (dashed line, antiferromagnetic array).

W ±
array(N) as a function of the nearest-neighbor distance, d, in

ferromagnetic (solid line) and antiferromagnetic (dashed line)
arrays. Figure 4 illustrates our results showing that in the
ferromagnetic array, interaction effects decay but extend over
long distances. Figures 3 and 4 agree with conclusions from
experiments by Nielsch et al [6] who assume that, due to the
high aspect ratio of the magnetic nanowires in a hexagonal
array, the stray field interaction extends over several nearest-
neighbor distances.

3. Monte Carlo simulations

As a consequence of the large aspect ratio of the wires
investigated, the anisotropy that they present is mainly shape
anisotropy. In this case, the individual wires can be considered

Figure 5. Hysteresis loops as measured with a SQUID (black dots)
and obtained from numerical simulations (solid/blue line) with the
external field applied parallel to the wire direction.

as nearly single-domain structures with two stable states:
the magnetic moment pointing up or down. However, the
behavior of the array as a whole differs from a pure bi-stable
magnetic state due to the magnetostatic interactions between
the nanowires. In order to model the hysteresis loop of the
array we develop Monte Carlo (MC) simulations considering
the expression for the magnetostatic interaction among wires
obtained in section 2. Therefore the internal energy of a
hexagonal array with N identical wires can be written as

E = μ0 M0V

(
N−1∑

i=1

N∑

j=i+1

M0 Ẽ1
int(Si j) − (Ha + Hc)

N∑

i=1

σi

)

.

The first term in the above equation is the magnetostatic
interaction of all pairs of magnetic wires. The coupling
Ẽ1

int(Si j ) is given by equation (7). The second term corresponds
to the contribution of an external magnetic field, Ha, applied
along the axis of the wire and the third term, Hc, represents
the magnetic shape anisotropy of a single wire, giving its
coercivity. Note that the information about the geometrical
arrangement of wires within the array is given by relative
distances Si j . Besides, coercivity and saturation magnetization
values have to be settled for calculations. In our simulations
we used M0 = 480 emu cm−3, a standard value for Niquel,
and Hc = 215 Oe, obtained from experimental results shown in
figure 5 in this paper. The hysteresis loops were simulated with
the external field in the direction of the wire axis. The initial
state, at Ha = 4.0 kOe, higher than the saturation field, has a
configuration in which all the magnetic moments were aligned
with the external field. The field was then linearly decreased at
a rate of 300 Monte Carlo steps for 	Ha = 0.01 kOe.

Figure 5 shows the hysteresis loop of the Ni nanowire
array (R = 90 nm, L = 3.6 μm and d = 500 nm)
along the axial direction. The black dots were obtained
from measurements [28] with a superconducting quantum
interference device (SQUID) and the solid line by MC
simulations considering N = 9699.

Deviations between SQUID measurements and numerical
calculations can originate in the dispersion of lengths and
positions of each wire in the array and a reduction in the

4



Nanotechnology 18 (2007) 415708 D Laroze et al

homogeneity of the diameter of nanopores [29]. From figure 3
we have obtained that a large number of wires (N ≈ 106)
is required for reaching convergence of W +

array(N). However,
with present standard computational capabilities it is not
possible to obtain hysteresis loops with N higher than 10 000.
Thus, if smaller samples are simulated, it is necessary to be
careful when comparing with experimental results.

4. Conclusions

By expanding analytical expressions for the magnetostatic
interactions between wires, we investigate first-order and
second-order approximations to the interaction energies
showing the range of validity of these expansions. When the
wires are apart at distances much larger than their diameters,
the first-order approximation is valid. The energy expressions
lead us to investigate the extent of the interwire magnetostatic
interactions in a square array. The number of wires required
to obtain independent results on the size of the array strongly
depends on the relative magnetic ordering of nearest-neighbor
wires. For the ferromagnetic array, and due to the additive
nature of the dipolar interaction, results strongly depend on the
size of the array, and a very significant number of wires, 106,
is required to obtain size independent results. Then, the size of
the array is an important factor to be consider when different
measurements have to be compared. Monte Carlo simulations
of hysteresis loops with the corrected magnetostatic interaction
among wires give fairly good agreement with experimental
measurements.
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Appendix. Total interaction energy of a square array

The total interaction energy of the N = n × n square array can
be written as

Ẽ±
array(n) = 1

2

n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

(±1)(k−i)−(l− j)

× Ẽint

(
d
√

(k − i)2 + (l − j )2
)

,

where + (−) refers to parallel (antiparallel) nearest-neighbor
magnetic orientation of the elements in the array. Note that
Ẽint corresponds to the dipolar interaction energy between two
identical magnetic elements of arbitrary shape. Here Ẽint(0) =
0, avoiding the self-interaction of the particles. For simplicity
we define the following function:

f ±(p, q) = (±1)p−q Ẽint(d
√

p2 + q2), (A.1)

which can be used to write the interaction energy in a compact
form; that is

Ẽ±
array(n) = 1

2

n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

f ±(k − i, l − j ). (A.2)

We can reduce the number of summations using the following
rule:

n∑

i=1

n∑

k=1

g(k−i) = ng(0)+
n−1∑

p=1

(n−p)[g(p)+g(−p)], (A.3)

which leads us to write
n∑

i=1

n∑

k=1

f ±(k − i, l − j ) = n f ±(0, l − j )

+ 2
n−1∑

p=1

(n − p) f ±(p, l − j ).

Then, the interaction energy, equation (A.2), reduces to

Ẽ±
array(n) = n

2

n∑

j=1

n∑

l=1

f ±(0, l − j )

+
n−1∑

p=1

(n − p)

n∑

j=1

n∑

l=1

f ±(p, l − j ). (A.4)

Using again the rule (A.3), we can reduce the double sums in
equation (A.4), obtaining

Ẽ±
int(n) = n2

2
f ±(0, 0) + n

n−1∑

q=1

(n − q) f ±(0, q)

+ n
n−1∑

p=1

(n − p) f ±(p, 0)

+ 2
n−1∑

p=1

n−1∑

q=1

(n − p)(n − q) f ±(p, q).

From (A.1) we know that f ±(0, 0) ≡ 0, which leads us to
finally obtain

Ẽ±
array(n) = 2n

n−1∑

p=1

(n − p)(±1)p Ẽint(pd)

+ 2
n−1∑

p=1

n−1∑

q=1

(n − p)(n − q)(±1)p−q Ẽint

(
d
√

p2 + q2
)

.
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