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Abstract – The results of the magnetic dipolar field in a simple set of two amorphous
ferromagnetic wires of composition Fe77.5Si12.5B15 placed side by side are presented. Owing
to their peculiar domain structure, they could, in principle, be approximated by macroscopic
magnetic dipoles, allowing the analysis of the magnetostatic field between these magnetic entities.
Magnetization measurements as a function of the distance between the parallel wires were
performed. Results can be explained considering the magnetostatic field created by one wire in the
neighboring one. It is clearly shown that this field is responsible for changes of the reversal field of
the wires, leading to the appearance of plateaux during the demagnetization process. Instead of
pure dipolar model that does not fit experimental data, a multipolar model has been developed,
showing a rather good agreement with the experimental results.

Copyright c© EPLA, 2007

Introduction. – Dipolar interactions among magnetic
entities have been widely studied, because they are
fundamental to the progress of basic research and to the
development of a number of application oriented novel
magnetic devices. Advances in fabrication techniques
(including chemical routes, electrodeposition and litho-
graphy) have allowed the fabrication of nanostructured
systems with very interesting physical properties. In
particular, it is nowadays possible to obtain controlled
arrays of magnetic wires with diameters of few nano-
meters, which are of practical interest in the design and
optimization of devices for ultrahigh-density data storage
applications, for example [1]. In such systems, as in many
other artificial magnetic structures, magnetostatic inter-
actions may play a fundamental role in the magnetization
reversal process and domain structures of the individual
elements, which consequently would influence the overall
magnetic response of the system.
The magnetic dipole is the basic entity of magnetism.

Any calculation or simulation used to describe the

magnetic behavior of a system employs this concept.
However, in the case of real systems, either nano, micro
or macroscopic, the effective magnetostatic interactions
among the elements are still unknown, although they
could have a strong influence on the macroscopic magnetic
behaviour of the system. An intrinsic obstacle in the
experimental study of magnetic interactions is the fact
that it is extremely difficult to single out an individual
magnetic element, even using the most sensitive magne-
tometric techniques. Also, the predictions of numerical
simulations are intricate to compare with real systems,
owing to the necessity of introducing several approxima-
tions in the modeled problem. However, a very interesting
macroscopic analogous has been extensively studied,
placing together several ferromagnetic amorphous wires
and microwires [2]. The stray fields couple the magneti-
zations of neighboring wires, affecting the magnetic state
of each single wire. Such systems are relatively easy to
study experimentally, and, in the case of few wires, it was
possible to obtain analytical solutions (by assuming a
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simple dipole approximation) [3]. The predicted solutions
and experimental data can be compared with Monte
Carlo simulations, which are required when the array is
formed by a large number of wires [4].
Although an array composed of few ferromagnetic wires

seems to be a quite simple problem to study and model,
it is striking to realize how intricate this problem can
turn out to be [5]. The complication in the study of dipo-
lar interactions is that the magnetic fields resulting from
the interaction depend on the magnetization state of each
single entity, which, in turn, depends on the effective field
of neighboring elements. In this context, numerical simu-
lations using Monte Carlo algorithms have been usually
employed to analyze the configuration of such systems in
terms of well-established theoretical approaches, such as
Ising and Heisenberg models, for example [6]. However, it
is worth noting that the usually employed dipole approxi-
mation is not valid (see below), and a more complex theo-
retical treatment is necessary to understand the magnetic
response of the system.
In the present work, a detailed study of the magne-

tostatic interaction between two parallel soft magnetic
amorphous wires placed side by side is shown. We have
investigated the variation of the interaction strength with
distance, and the experimental results indicate that a
simple dipolar model cannot explain the observed decay of
the strength with distance. In order to explain such behav-
ior, we have developed a multipolar model for the inter-
action that explains the experimental results with better
accuracy.

Experimental features. – The studied amorphous
wires were produced by the in-rotating water quenching
technique having nominal composition Fe77.5Si12.5B15 and
diameter of 132µm. Quasistatic magnetic hysteresis loops
were performed at room temperature in a home-made
hysteresis loop tracer with a fluxmeter. The magnetic field
was applied along the wire axes and was generated by long
solenoid (32 cm), while the pick-up coils were 3 cm long
(to avoid detecting border effects). To carry out hysteresis
loops from two parallel wires, two distinct approaches
were used: when the distance between the wire centers
was below 3mm, the measurements were performed within
the same pick-up coil; otherwise the measurements were
obtained with each wire in a different pick-up coil.
The domain structure of each stable state contains a

large domain whose magnetization reversal is responsible
for the large Barkhausen jump, giving rise to the bistable
magnetic behavior between two stable magnetic configura-
tions. A closure structure appears at each end of the wire,
whose length determines the critical length to the appear-
ance of magnetic bistability. Once the critical length in
amorphous wires is of the order of 8 cm [7], we have cut
10 cm long pieces of wires from a longer wire in order
to observe a bistable magnetic behavior (two remanent
states) in each individual sample [8].
Figure 1(b) shows the experimental hysteresis loops

measured on two wires placed side by side forming a

Fig. 1: Hysteresis loop for the Fe77.5Si7.5B15 amorphous wire:
(a) single wire, (b) two parallel wires (arrows indicating the
magnetic configuration).

simple array with distance between the axes of the wires
of around 0.5mm. In the case of a single wire (see
fig. 1(a)) the hysteresis curve exhibits a typical square
loop, with characteristic large Barkhausen jumps, as
expected for high magnetostriction amorphous wires [9].
Also, a slight decrease of magnetization prior to the giant
Barkhausen jumps is observed. This reduction in the
magnetization is probably connected to the orientation
of the domains in the closure structure and the radially
oriented outer shell [10]. In the case of one single wire
the magnetization reversal occurs for |H∗|= 8A/m, where
H∗ is the switching field. In several pieces cut from the
same master wire we have verified fluctuations in H∗ up to
5A/m. Such fluctuations are mostly due to the induction
of anisotropies (mainly magnetoelastic) when the samples
are cut from the original piece. This fact was observed
in several pieces of wires with length varying between 8
and 12 cm. This effect can be even observed in fig. 1(a),
where differences in the values of magnetization are found
slightly before the respective giant Barkhausen jumps for
each direction of the applied magnetic field.
We have also performed a study of fluctuations of
H∗ in a single piece of wire. The histogram of the
values obtained from 41 hysteresis loops is shown in
fig. 2, showing that the amplitude of this fluctuation is
around 0.4A/m, indicating that the domain configuration
is slightly changed after each cycle, giving rise to small
fluctuations in the switching field. Also, it is worth
mentioning that the position of the wires inside the
pick-up coils is critical in these measurements, and small
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Fig. 2: Histogram of the switching field values obtained from
41 hysteresis loops.

variations could cause fluctuations in the switching fields.
Such fluctuations have a relevant role in the study of
dipolar interactions among several wires.
In the case of a couple of wires separated by 0.5mm,

the hysteresis loops exhibit two clear Barkhausen jumps
and plateaux at zero magnetization (see fig. 1(b)). Such
plateaux correspond to the configuration of two wires with
opposite magnetization directions. It is worth noticing
that the first jump occurs at magnetic fields lower than
the value of H∗ of a single wire, while the second one
occurs for fields larger than H∗. These reversal fields were
named H i2 and H

ii
2 , and their values are 2.3 and 18.2A/m,

respectively, for positive demagnetizing field. The splitting
of H∗ into two reversal fields has its origin in the dipole-
dipole interaction between the wires [11]. Varying the
number of wires, the hysteresis loops correspondingly
exhibit several steps on the demagnetization, each one
corresponding to the reversal of the magnetization of a
single wire [2,3].

Theoretical model. – The standard theoretical model
for the description of the interaction of two wires has
been the dipolar interaction with some phenomenological
modifications [12]. In such model, one considers that
beyond the applied magnetic field, H, each wire feels the
influence of a dipolar field, Hi,j , whose origin is due to
the presence of the other wire, where Hi,j is the field of
the wire i over the wire j. So, if one considers each wire as
a single dipole, the resulting dipolar field Hi,j would be
given by:Hi,j =KnMi being Kn a geometric factor which
depends on the distance between interacting wires, the
subscript n simply denotes the relative distance between
the wires and Mi the magnetization of the i -th wire [3].
Therefore, for two wires one can easily obtain the mutual
dependence produced by the dipole-dipole interaction
through the expressionMk(H+Hj,k), with k= (1, 2) and
j �= k. However, such a simple dipole approximation is not

Fig. 3: Measured plateau length as a function of the interwire
separation. Pure dipolar model (squares) and magnetostatic
model (triangles) including all multipolar terms.

valid when dealing with interacting wires which are closely
placed forming a linear array. This is clearly observed
when the dipolar model is used to fit the effects of
magnetostatic fields as a function of the distance. In such
case, strong discrepancies appear, as can be clearly seen
in fig. 3, which shows the plateaux width ∆ as a function
of the separation between two wires.
Considering the above mentioned discrepancies, we

have developed a new model to better consider the
magnetostatic interactions among magnetic wires. Let
us consider the scalar magnetic potential of a cylinder
characterized by a radius R and a height L, assuming that
the magnetization is uniform and described byM=Mz ẑ,
where z is the cylinder axis [13]. The potential outside the
body is given by

U (r) =
γB
4π

∫

S(V )

M (r′) ·dS′

|r− r′|
−
γB
4π

∫

V

∇′ ·M (r′)

|r− r′|
d3r′. (1)

where γB is a constant for the different system of units
(in the international system of units γB = 1, and for
cgs system γB = 4π) [14]. Note that the second term
on the righ-hand side of eq. (1) vanishes, because the
magnetization field is constant; furthermore, in the surface
integral of eq. (1) the only contributions arise from the
upper and lower bases of the cylinder: the upper circle is
located at z =L and the lower one at z = 0. Due to the
symmetry of the problem, we used the adequate type of
the cylindrical kernel for the integral [15], and after few
manipulations, one finds that the integral expression for
the scalar potential is given by

U (r) =
γBMzR

2

∞
∫

0

dk

k
J1 [kR]

× (exp [−k |z−L|]− exp [−k |z|])J0 [kρ] , (2)
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where Jm [q] is the Bessel function of integer order and
ρ is the axial radius of the cylindrical coordinates. It is
worth noticing that in the experimental situation, R/L is
well defined and it is of the order of 10−4, whereas for
the interwire distance D, D/L can be any value (usually
D/L< 1). Owing to the experimental conditions, we work
in the regime characterized by R/L� 1, our wires have a
diameter of the order of 130µm. In this case the potential
from eq. (2) can be approximated by

U (r)∼=
(

γBMzR
2/4
)

×((ρ2+(z−L)
2
)−1/2−

(

ρ2+ z2
)−1/2

). (3)

Once the potential is known, the magnetic field is easily
obtained from H (r) =−∇U (r). Hence, it is possible to
proceed to calculate the magnetostatic interaction energy,
E12, between two identical parallel cylinders

E12 =−

∫

V2

M2 ·H1 (r2) dV2, (4)

where the sub-indexes label the cylinders 1 and 2, respec-
tively. When the magnetization field is constant, the
contribution of the magnetostatic energy is only due to
a surface term; and it is also possible to use the integral
expression of the scalar, eq. (2). Therefore, the integral
expression of interaction energy between two cylinders
characterized by magnetizations M1z and M2z, respec-
tively, is given by

E12 = 2γBM1zM2z V

∞
∫

0

dx

x2
(1− exp [−x])

×J0 [(D/L)x] (J1 [(R/L)x])
2
. (5)

In the case of wires one has R/L= α� 1, in such case one
can use that J1[αx]≈ αx/2 and with this approximation
eq. (5) can be written in a very simple form

E12 ∼=
γB
2π

(V ·M1z) (V ·M2z)

L2D

(

1−
(

1+ (L/D)
2
)−1/2

)

.

(6)
We remark that this expression includes all multipolar
terms of the interaction and for large separation D, each
cylinder can be considered as a single dipole. Therefore,
their interaction is dipolar at first order, which can be
easily seen from eq. (6) in the limit L/D� 1; in such case
the energy becomes

E12
L/D�1
−−−−−→ γB(V ·M1z) (V ·M2z)/

(

4πD3
)

This relationship describes the energy of two dipoles
separated by a distance D to each other. On the other
hand, when L/D� 1 one has the limit

E12
L/D�1
−−−−−→ γB(V ·M1z) (V ·M2z)/

(

2πDL2
)

.

A careful analysis of eq. (6) indicates that the dipolar
approximation appears valid when D approaches the value
of L, corroborating that both energy expressions should
coincide when L/D� 1. Thus, when considering magne-
tostatic interaction among nanowires, microwires or even
wires, the dipole-dipole approximation usually overesti-
mates the actual interaction at short distances. It is worth
mentioning that recently, another interesting approach to
calculate the magnetostatic interaction between magnetic
particles has been developed by Beleggia et al. [16], with
similar results.

Comparison between theory and experimental

data. – In order to reproduce the magnetic behavior of
two wires, we have used a rectangular box model for each
wire, M = F (Heff ,H

∗), where Heff is the effective field
on the wire and H∗ is its switching field; in addition F
represents the bi-valuated rectangular box function, which
resembles the hysteresis cycle of one bistable wire, as
shown in fig. 1(a). We have used different values for the
switching fields, 7.5A/m and 8.5A/m, respectively (see
fig. 2). The effective field on each wire is then the sum of
the external field plus the magnetic field produced by the
neighboring wire. Furthermore, we assumed that magnetic
field produced by wire i, with magnetic moment pointing
in the +z direction, on wire j is in the −z direction,
and with a magnitude calculated from the eq. (5) divided
by the magnetic moment of the wire j. Therefore doing
a simple simulation starting from saturation at higher
external fields we obtained the hysteresis curve of the two
wires system M1+M2 = F (Heff1,H

∗
1 )+F (Heff2,H

∗
2 ).

Figure 4 shows the theoretical hysteresis loops. It is worth
noting that the model is in fairly good agreement with the
experimental data.
Let us compare the theory with the experiment depicted

in fig. 3, i.e., the dependence of the magnetostatic inter-
action with the distance between the wires. The width
of the plateaux is a direct measurement of the strength of
magnetostatic interaction between both wires. The spatial
variation of this quantity furnishes relevant information
on the nature of the dipolar fields generated by each
wire [12]. Indeed, the experimentally measured decay of
the interaction field is much faster than the correspond-
ing decay predicted for the present experimental condi-
tions in the pure dipolar model. The squares depict the
result of modeling the plateaux by assuming that the two
wires interact via a simple dipole-dipole term. For this
curve we take as the effective magnetic volume V ∗ only
1% of the full volume V of each wire, this is fairly a very
low value and seems to be very unrealistic. It is observed
that the fit is good only at large separations. By further
decreasing the effective volume V ∗, the fit improves in the
low separation region, but it deteriorates at larger sepa-
rations. So by using only a dipole-dipole term there is no
way to fit the entire separation region by using a single
effective volume. The triangles depict the results obtained
using the approximated full magnetostatic model. The fit
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Fig. 4: Simulated hysteresis loop for one and two wires based
on the box model.

is based on eq. (6), which takes into account all multipolar
terms in an approximated way. Therefore, a simple model
of the magnetostatic interaction between two magnetic
monodomains agrees rather well with experimental data.
Also, from the model it is possible to extract some physical
parameters. Using the experimental value for the satura-
tion magnetization of 1.5T and a volume of a perfect cylin-
der V = πR2L, with L= 10.5 cm we obtain an effective
core radius of R∗ = 47µm, which is around 28% smaller
than the real radius of R= 66µm. In fact, this can be
roughly considered as the error of assuming a homoge-
neous magnetization in our model. Thus, the effective
monodomain volume V ∗ is roughly 50% of the geomet-
rical volume V of the wire, in agreement with previous
theoretical calculations and complementary experimental
data [7].
Although the microscopic mechanism of the domain

nucleation of this kind of wires has not been taken
into account, the results presented here are encouraging.
Modeling a wire as a single domain with anisotropy
assuming a rectangular box model for their hysteresis, is
enough to understand the behavior of the magnetization
with distance when placing two or more wires parallel at
a given distance. The main reason, due to geometry, is
that the magnetostatic interaction decays inversely with

distance and not with distance to the third power as
in the standard dipole-dipole approximation. The results
for arrays of microwires and more realistic structure of
magnetization will be presented elsewhere.

Final remarks. – The strength of magnetostatic
interaction between two parallel Fe77.5Si12.5B15 wires
was measured for different distances between the wires.
Considering each wire as a magnetic dipole, the magne-
tostatic dipolar field cannot describe quantitatively the
interactions as a function of the distance between the
wires. A more complex model concerning multipolar field
contributions is presented, providing a good description
of the magnetostatic interactions.
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