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Abstract

In the present work, we study the deterministic spin dynamics of four interacting magnetic particles, with both dipolar and exchange

interactions in the presence of an applied magnetic field, by means of the Landau–Lifshitz equation without the dissipation term. In

particular, we analyze the ring geometrical configuration with periodic boundary conditions for the exchange coupling. In addition, we

explore the parameter space by numerically calculating some bifurcation diagrams. Due to the strength ratio of interactions, two time

scales appear. Finally, we find that the total magnetization is not conserved and it has a strong dependence on the control parameters.

r 2007 Published by Elsevier B.V.
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1. Introduction

The increasing demand for improved recording media
has impelled worldwide research for the development of
magnetic nanoparticles applications. In this context, for the
dynamics of interacting magnetic particles, considered as
monodomains, it is essential to model spintronic devices
[1]; hence, a detailed study of a simple interacting magnetic
system is really important and in order.

Theoretical studies for two, three, and four magnetic
particles interacting through exchange interaction were
performed in Refs. [2–5]. The exact solution for classical
spin dynamics of two magnetic particles was calculated in
Ref. [2]; finding that the dynamical behavior is oscillatory.
Also, the dynamical behavior of two magnetic particles in
the presence of a strong magnetic for both classical and
quantum description was evaluated in Ref. [3], determining
that the total magnetization makes precessions around the
applied magnetic field. The exact solution of the spin
dynamics of three magnetic particles and its corresponding
autocorrelation function were established for both linear
and triangular geometrical configurations, considering a
e front matter r 2007 Published by Elsevier B.V.
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null magnetic field [4]. The ring geometrical configuration
for four magnetic particles, assumed as classical Heisen-
berg spins, was analyzed in Ref. [5]; in this authoritative
work the time evolution of each one of the spins and their
corresponding time correlation functions were solved
explicitly for any temperature.
On the other hand, the problem of interacting magnetic

particles, coupled by the long-range magneto-dipole inter-
action, is of substantial interest and importance due to
possible applications of nano-patterned magnetic media for
magnetic memory systems. The main interaction between
different magnetic nanoparticles, that are used to store the
bits of information, is the magneto-dipole interaction, and
the dynamics of such dipole-coupled systems is not well
understood. In this framework, the dynamical behavior of
two particles interacting through dipole–dipole interaction
was analyzed in Ref. [6]. The authors conclude that, due to
dipolar interaction the total magnetization is not a con-
stant; furthermore, the total magnetization is a fluctuating
time dependent function.
In the present work, we analyze in detail the determi-

nistic behavior of four interacting magnetic particles, via
dipole–dipole interaction and via exchange interaction, in
the presence of an applied magnetic field. In particular, we
analyze the ring geometrical configuration with periodic
016/j.physb.2007.08.078
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Fig. 1. (a) Cartesian components of the fourth magnetic particle, e4j , as a

function of time for h ¼ 1, m=ðd3H0Þ ¼ 15:256 and J=ðmH0Þ ¼ 4. (b) z

component of the fourth magnetic particle, ej
z, as a function of time for

different values of J at h ¼ 1 and m=ðd3H0Þ ¼ 15:256.
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boundary conditions for the exchange coupling. We
consider different regimens of the parameters for under-
standing corresponding magnetic behaviors. It has been
remarked [7] that, when a magnetic system subjected to
short field pulses and its dynamics is fast then the
dissipative effects can be neglected; hence for short
time interval we have here applied this feature. The paper
is arranged in the following way: In Section 2 the
theoretical model is described. In Section 3 the numerical
results are discussed. Finally, conclusions are presented in
Section 4.

2. Theoretical model

Let us consider a system of N magnetic particles and
assume that each particle can be represented by a magnetic
monodomain. The temporal evolution of this system can
be modeled by the of Landau–Lifshitz (LL) equation [8],
and in the absence of damping, it can be written as

dmi

dt
¼ gmi �Hi

eff , (1)

where mi is an individual magnetic moment with i ¼

ð1; . . . ;NÞ and g is an effective gyromagnetic ratio. The
corresponding ith effective field, Hi

eff , is given by Hi
eff ¼

�rmi H where H represents the appropriate Hamiltonian
for the system.

At this point, we would like to remark that the structure
of Eq. (1) has an intrinsic relationship with the Nambu’s
equation governing the dynamics for a triplet of canonical
variables with two motion constants [9]; in the case of a
single magnetic moment, the triplet of canonical variables
is given by m and the two motion constants are the
Hamiltonian, H, and the magnitude of the magnetic
moment, mj j. In addition, due to the individual magnetiza-
tion magnitudes being constant, the system (1) can be
reduced to a system with 2N coupled differential equations.
In order to describe this characteristic we use the following

transformation: mi ¼ ðf ðmi
zÞ cos x

i; f ðmi
zÞ sin x

i;mi
zÞ
T with

f ðmi
zÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðmi

zÞ
2

q
, so if we considered the 2N dimen-

sional vector g ¼ ðm1
z ; . . .m

N
z ; x

1; . . . ; xN
Þ
T
¼ ðmz; nÞ

T as the

vector of canonical variables and conjugate momentum
vector , the equation for g can be cast in the form

dg
dt
¼

0 �I

I 0

� �
rgHðgÞ, (2)

where I is the N dimensional identity matrix. Eq. (2) is the
Hamilton’s equation of motion for g. This representation
of Eq. (1) is an elegant form to present the classical spin
dynamics; however it is not useful for numerical integra-
tion.

In this work we analyze four interacting magnetic
particles on a ring, including dipolar and exchange
interactions in the presence of an external field; therefore,
Please cite this article as: D. Laroze, L.M. Perez, Physica B (2007), doi:10.1
the Hamiltonian has the following form:

H ¼ �
X4
i¼1

H �mi þ Jmi �miþ1
� �

þ
X
iak

r�3ik mi �mk � 3 mi � r̂ik

� �
mk � r̂ik

� �� �
, ð3Þ

where H represents the external magnetic field, J is the
exchange coupling constant and rik ¼ ri � rk, with ri being
the position vector of the i-magnetic moment. Hence, for
periodic boundary conditions, inserting Eq. (3) into Eq. (1)
produces the corresponding LL equations of the system:

dmi

dt
¼ gmi � Hþ J mi�1 þmiþ1

� ��
�
X

k

r�3ik mk � 3 mk � r̂ik

� �
r̂ik

� �!
. ð4Þ

We note that the corresponding LL equations have a
nonlinear coupling due to the interaction terms; and the
system presents two time scales depending on the magni-
tude of the magnetic interactions, because they are of
different nature. Furthermore, when the distance between
016/j.physb.2007.08.078
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the magnetic moment increases, the dominant terms in
Eq. (4) are due to the exchange and the external applied
field, in that case the total magnetization precesses around
the applied field direction and the individual magnetiza-
tions precesses around another direction which is defined
by the sum of the external field and the exchange coupling
constant times the total magnetization. Besides, Eq. (4) has
four constraints: the individual magnetization magnitudes
are constant. These constraints have an important con-
sequence in the dynamical behavior: the global dynamics of
each magnetic moment is reduced to a spherical section.

As a final comment of this section, we remark that due
to the dipolar interaction, the magnitude of the total
magnetization is not stationary. With the purpose of
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Fig. 2. (a) Cartesian component of the total magnetization, Mj

�
Ms, as a functi

a 3D phase diagram of M for the same set of parameters. (b) Normalized magn

values of d at h ¼ 1 and J=ðmH0Þ ¼ 1.
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elucidating this property we can write M ¼
P4

i¼1m
i, so the

dynamics of M obeys the equation

dM

dt
¼ gM�Hþ F. (5)

Eq. (5) describes the behavior of an equivalent single
magnetic moment in the presence of an applied magnetic
field and an extra fluctuating term, F ¼ Ffmig, which is a
function of mi. Since, the set of nonlinearities mi�

r̂ikðm
k � r̂ikÞ, in Eq. (4), generate F, consequently Eq. (5)

will have a different behavior with respect to the pure
precessional dynamics; actually, this extra field can be
interpreted as a time dependent fluctuating field. Also, F
has a different structure from the Gilbert dissipation term:
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Fig. 3. Bifurcation diagram of the normalized x component of the total

magnetization, Mx=Ms, as a function of h for m=ðd3H0Þ ¼ 1 and

J=ðmH0Þ ¼ 1.
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Fig. 4. Bifurcation diagram of the normalized total magnetization

modulus, M=Ms,as a function of d for h ¼ 1 and J=ðmH0Þ ¼ 1.
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M� dM=dt [10], because it preserves the modulus of M as
a constant. Moreover, from Eq. (5) it is clear that the
magnitude of the total magnetization is not conserved, it is
fluctuating in time.

3. Numerical results

In order to integrate numerically Eq. (4), we express
them in a dimensionless form; for this purpose we
introduce the following new variables ej ¼ mj=m; hi

eff ¼

Hi
eff=H0; and t ¼ t=ðgH0Þ, where H0 is the magnitude of a

reference magnetic field. The initial conditions for the
magnetic moments are selected in one particular saturation
condition e10 ¼ e20 ¼ e30 ¼ e40 ¼ ẑ and we impose that
h ¼ hð1=

ffiffiffi
2
p

; 1=
ffiffiffi
2
p

; 0Þ. The geometrical ring condition is
ri ¼ dðcosðpði þ 1Þ=2Þ; sinðpði þ 1Þ=2Þ; 0Þ. We will assume
that, the four magnetic particles are identical. An order
four Runge–Kutta numerical method was used to solve our
12 differential equations in the Cartesian coordinates given
in Eq. (4). For testing our numerical method we calculate
each individual magnetic moment with more than 35
significant numbers, as it is shown in Fig. 1(a).

Fig. 1 shows the time evolution of the fourth magnetic
moment, e4, for h ¼ 1 and m=ðd3H0Þ ¼ 15:625. Fig. 1(a)
corresponds to the three Cartesian components and the
modulus of e4, as function of time at Jm=H0 ¼ 4. We
observe that all the components exhibit a non-periodic
behavior; in particular, the x and y components increase
their amplitudes and the z component is taken off of its
equilibrium state and produces an irregular behavior. Fig.
1(b) shows the z component of e4 as a function of time at
h ¼ 1 and m=ðd3H0Þ ¼ 15:625 for different values of J. We
note that, when J ¼ 0 z component always fluctuates,
nevertheless when the exchange interaction is taken into
account its fluctuation tends to diminish; moreover, when J

increases e4z remains constant in a time interval and after
that e4z exhibits an irregular behavior. In addition, for a
fixed value of J and when the intensity of the dipolar
interaction decreases, the time interval in which this
component stays constant increases. We remark that, its
dynamical behavior strongly depends on the relative
interaction coupling constants.

Fig. 2 shows the time evolution of the total magnetic
moment, M, at h ¼ 1. Fig. 2(a) shows the three Cartesian
components of M as a function of time for m=ðd3H0Þ ¼

15:625 and Jm=H0 ¼ 5. Notice that, until t�10 all the
components fluctuate near their equilibrium states, after-
ward their amplitudes increases, a chaotic movement is
revealed as it is shown in the inset. Fig. 2(b) shows the
modulus of the total magnetization, M, as a function of
time at h ¼ 1 and J=ðmH0Þ ¼ 1 for different values of d.
Notice that, it presents a non-periodic behavior and is
always a fluctuating function of time; so this figure confirm,
numerically, the structure of Eq. (5). When the exchange
interaction is the relevant term in Hamiltonian (3), M

remains constant for some time interval, after that it
exhibits a transition to a fluctuating function of time.
Please cite this article as: D. Laroze, L.M. Perez, Physica B (2007), doi:10.1
Now let us analyze the parameter space, for this propose
we calculate numerically some full bifurcation diagrams.
Fig. 3 shows the bifurcation diagrams for the x component
ofM as a function of h for m=ðd3H0Þ ¼ 1and J=ðmH0Þ ¼ 1.
This diagram is similar to the diagrams of doubling period;
therefore, we can suggest that this system will exhibit a
chaotic behavior when h increases. Fig. 4 shows the
bifurcation diagram for the modulus of the total magne-
tization, M, as a function of d for h ¼ 1 and J=ðmH0Þ ¼ 1
We remark that, when d increases, M becomes stable only
at unity, and it is a physical correct result, because when
strength of dipolar interaction decreases the modulus of
total magnetization must tend to a constant value.

4. Conclusions

The spin dynamics of four identical interacting magnetic
particles considering dipole–dipole and exchange interac-
tions in the presence of an applied magnetic field on ring
configuration was analyzed. Due to the two kinds of
interactions, two time scales arise: a short time scale related
016/j.physb.2007.08.078
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to the dipolar interaction and a long time scale associated
with the exchange interaction. As a result of the dipolar
interaction, the modulus of the total magnetization is a
fluctuating function of time. If we only consider the dipole
interaction, the modulus of the total magnetization
presents a non-periodic structure; however, when the
exchange interaction is taken into account, it remains
constant for some time interval, after that it exhibits a
transition to a fluctuating function of time. Finally, we
remark that, when the strength of dipolar interaction
decreases the normalized modulus of total magnetization
tend to the unity.
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