
Computer Physics Communications 182 (2011) 1105–1110
Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

SearchFill: A stochastic optimization code for detecting atomic vacancies
in crystalline and non-crystalline systems

Sergio M. Davis a,∗, Anatoly B. Belonoshko a, Börje Johansson a,b

a Applied Materials Physics, Department of Materials Science and Engineering, KTH, SE-100 44 Stockholm, Sweden
b Condensed Matter Theory Group, Department of Physics, Uppsala University, Uppsala, Box 530, Sweden

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 June 2010
Received in revised form 26 November 2010
Accepted 2 December 2010
Available online 7 December 2010

Keywords:
Monte Carlo
Vacancies
Interstitials
Computer simulation
Numerical optimization

We present an implementation of a stochastic optimization algorithm applied to location of atomic
vacancies. Our method labels an empty point in space as a vacancy site, if the total spatial overlap of
a “virtual sphere”, centered around the point, with the surrounding atoms (and other vacancies) falls
below a tolerance parameter. A Metropolis-like algorithm displaces the vacancies randomly, using an
“overlap temperature” parameter to allow for acceptance of moves into regions with higher overlap, thus
avoiding local minima. Once the algorithm has targeted a point with low overlap, the overlap temperature
is decreased, and the method works as a steepest descent optimization.
Our method, with only two free parameters, is able to detect the correct number and coordinates of
vacancies in a wide spectrum of condensed-matter systems, from crystals to amorphous solids, in fact in
any given set of atomic coordinates, without any need of comparison with a reference initial structure.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The presence and behavior of defects and atomic vacancies is an
important factor in the study of solids [1,2]. While structural point
defects, as well as dislocations and disclinations in crystals can be
detected, for example, by analyzing the coordination numbers of
individual atoms [3], or by more elaborated procedures such as
Voronoi-like constructions [4,5] or the Common Neighbor Analysis
(CNA) [6,7], a general procedure for the detection of hollow regions
of space is more complicated.

In atomistic simulations where the initial structure is regular
and well known, the identification of vacancy sites is a relatively
straightforward procedure. This initial structure can be used as a
reference to label any given site as “occupied” or “vacant” [8].

Unfortunately, a reference structure is not always available.
Consider for example the problem of locating defect interstitials
in an amorphous solid, vacancies in a polycrystalline structure, or
in a solid structure obtained by “freezing” a liquid. Even thermal
vibrations in the solid can make the “reference structure” approach
not trivial.

In this work we present a robust algorithm for locating in-
terstitial spaces within a structure, without the need for a refer-
ence structure. This is accomplished by gradually placing “virtual
spheres” on the places where they can fit without overlapping with
real atoms (or other virtual spheres). Each virtual sphere wanders

* Corresponding author.
E-mail address: sdavis@gnm.cl (S.M. Davis).
0010-4655/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2010.12.009
randomly through the system, following a Monte Carlo procedure
which attempts to minimize the total overlap, below a certain fixed
threshold.

2. Theoretical background

When two identical spheres of radius R0 overlap with each
other (see Fig. 1), each one loses a volume given by [9]

Vm = π

(
2

3
R3

0 − 1

3
R2

0r − 1

12
R0r2 1

24
r3

)
. (1)

Dividing by the volume of one of the spheres, the fractional
overlap is

fover(r) = 2Vm
4
3π R3

0

= 1 − 1

2

r

R0
− 1

8

(
r

R0

)2

+ 1

16

(
r

R0

)3

. (2)

The equivalent expression for 2D is

Fover(r) = 1

π

[
cos−1

(
r

2R0

)
− r

4R2
0

√
4R2

0 − r2

]
. (3)

Using Eq. (2), we can calculate the total overlap of a sphere,
centered at an arbitrary position �r, with its neighbors,

Fover(�r) =
∑

i

fover
(|�r − �ri|

)
θ
(
2R0 − |�r − �ri|

)
, (4)

where θ is the step function, which makes the sum only over the
non-zero terms coming from neighbors within a distance of 2R0.

http://dx.doi.org/10.1016/j.cpc.2010.12.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
mailto:sdavis@gnm.cl
http://dx.doi.org/10.1016/j.cpc.2010.12.009

1106 S.M. Davis et al. / Computer Physics Communications 182 (2011) 1105–1110
Fig. 1. Intersection of two identical spheres.

We can use the following operational definition: a point �r in
space will be labeled as a vacancy if the total overlap of a “vir-
tual sphere”, centered at �r and having radius R0 is smaller than a
threshold Ω , defined by

Ω = γ
1

N

N∑
i=1

Fover(�Ri), (5)

where the �Ri are the coordinates of the N atoms in the system.
Thus, Ω is proportional to the overlap “felt” by an occupied site
on average.

By using this definition it is possible to devise an automatic
procedure, which will first compute the threshold Ω for the set
of atomic coordinates and the atomic radius R0 (using γ as a
fixed external parameter), without any need for a regular refer-
ence structure. Then, iteratively proceed to identify points �Vk in
space with Fover(�Vk) < Ω .

The parameter γ controls the “greediness” of the threshold Ω ,
a small value of γ will direct the search towards really empty
regions of space, improving the precision of the algorithm, while
larger values will allow for certain overlapping between the va-
cancy and the surrounding atoms. A value of γ = 1 keeps the
threshold at the same value of the typical overlap of an atom in
the system, so for most uses a value of γ slightly higher than 1 is
recommended.

The radius R0 will be usually taken as half the nearest neighbor
distance, as determined from a previous calculation of the radial
distribution function g(r) [10], i.e., the first peak in g(r) happens
at r = 2R0.

It is important to note that, for the computation of the to-
tal overlap Fover , all the previously identified vacancies must be
considered as if they were real atoms, otherwise the procedure
will never reach a stopping point. In this sense the algorithm will
search for a vacancy candidate, fills it with an “occupied” virtual
sphere, and goes for the next candidate, hence the name.

3. Algorithm description

1. Put a test vacancy site at a random coordinate �r0 inside the
simulation box.

2. If the current total overlap ωi = Fover(�r0) is less than the
threshold Ω , then a new vacancy was found. In this case, place
an “empty sphere” centered at �r0 and go back to step 1.

3. Otherwise generate a random displacement ��r for the test va-
cancy.

4. If the new total overlap ω = Fover(�r0 + ��r) < ωi then accept
the move.

5. Otherwise reject the move with a probability Pr = e(β/ω)�F −
1.0, where β/ω acts like the inverse temperature (kB T)−1 in
the Metropolis formulation. This “temperature” is set to be
proportional to the current overlap ω to improve convergence
when the algorithm is getting close to a minimum, like in the
steepest-descent family of optimization algorithms.
6. Go back to step 2 unless the maximum number of iterations
NMAX was exceeded. In this case, the program ends. The co-
ordinates of all the vacancies found are saved to a separate
file.

It should be possible to use an alternate stopping criterion (at
step 6) instead of completing NMAX iterations, but this “early exit”
might leave some vacancies out at the end of the run. One possible
heuristic criterion could be to stop if the best starting location for
the next test vacancy exceeds a certain multiple of Ω (in that case,
no coordinate seems “empty enough” to admit another vacancy).

4. Implementation details

The SearchFill code is implemented in C++, using a link
cell algorithm [10] to speed up the computation of interatomic dis-
tances, needed for the sum in Fover . The default value of γ is taken
equal to 1.2, and β , the “inverse temperature” for the Metropolis
algorithm is taken to be β ≈ 4, which gives a probability Pr ≈ 1/2
of accepting a move which increases the overlap by 10%.

5. Results

Fig. 2 (left side) shows an ideal face-centered cubic (FCC) struc-
ture with 108 atoms, in which 11 atomic vacancies have been
created, by removing the same amount of atoms at random. Fig. 2
(right side) shows the same structure, after the vacancies have
been located and filled using the search-and-fill algorithm. Due
to the regularity of the structure, the search-and-fill procedure is
able to find exactly the 11 vacancies in the correct positions. (See
Table 1.)

Fig. 3 (left side) shows the same FCC structure with 108 atoms
as Fig. 2, but this time equilibrated to T = 1500 K, by using molec-
ular dynamics with an embedded-atom potential [11] describing
the interatomic forces. To make some sense of the temperature
scale, 8000 K for this particular potential and density corresponds
to the critical superheating temperature.

From this structure again 11 atomic vacancies have been cre-
ated, by removing the same amount of atoms at random. Fig. 3
(right side) shows the reconstructed structure, after the vacancies
have been located and filled.

Table 2 shows the result of applying the search-and-fill pro-
cedure to a body-centered cubic (bcc) sample, consisting of 5488
atoms, at different temperatures, covering all the range from an
ideal to a superheated solid. It is clear the performance of the algo-
rithm decreases with temperature but still is quite close to finding
the right number and coordinates of the placed vacancies. All the
runs were performed using the default values for β and γ . (See

Table 1
Results for 100 runs of the search-and-fill algorithm on a 108 atom, face-centered
cubic crystal equilibrated via molecular dynamics at different temperatures and
with different number of vacancies explicitly created.

System T (K) Vacancies Vacancies found Error in positions
(Å)

FCC, 108 atoms 0 1 1 ± 0.0 0.682 ± 0.250
FCC, 108 atoms 0 2 1.7 ± 0.46 0.626 ± 0.186
FCC, 108 atoms 0 5 4.2 ± 1.10 0.713 ± 0.225
FCC, 108 atoms 0 11 9.43 ± 2.00 0.635 ± 0.107

FCC, 108 atoms 1500 1 1 ± 0.0 2.480 ± 0.339
FCC, 108 atoms 1500 2 2.46 ± 0.68 1.442 ± 0.274
FCC, 108 atoms 1500 5 4.48 ± 1.08 0.907 ± 0.239
FCC, 108 atoms 1500 11 9.13 ± 1.15 0.849 ± 0.156

FCC, 108 atoms 2500 1 2.05 ± 0.36 1.300 ± 0.371
FCC, 108 atoms 2500 2 2.99 ± 0.33 1.028 ± 0.195
FCC, 108 atoms 2500 5 5.7 ± 0.79 0.999 ± 0.172
FCC, 108 atoms 2500 11 11.05 ± 0.94 1.022 ± 0.122

S.M. Davis et al. / Computer Physics Communications 182 (2011) 1105–1110 1107
Fig. 2. Face-centered cubic, 108 atoms. Left, with 11 atoms removed at random. Right, reconstructed with the search-and-fill algorithm.

Fig. 3. Face-centered cubic, 108 atoms. Left, with 11 atoms removed at random. Right, reconstructed with the search-and-fill algorithm.
Figs. 4 and 5.) Table 3 shows a similar test, but using an amor-
phous sample with the same number of atoms.

6. Efficiency

Our implementation is usually fast enough (in a common desk-
top computer) for analysis of a single configuration of about 5000
atoms and 50 vacancies, taking around 130 seconds for a single
run. By adjusting the maximum number of iterations NMAX below
the default value, after performing a few tests, it is possible to re-
duce the total number of Monte Carlo steps, because the code will
notice earlier the moment it is stuck in a local minimum.

Fig. 6 shows the performance of the algorithm for increasing
system sizes (from 128 to 1548 atoms) but constant number of
vacancies (namely, three). The scaling obeys a power law,

t(N) ∝ N0.84, (6)

where N is the number of atoms.
Table 2
Results for 100 runs of the search-and-fill algorithm on a 5488 atom, face-centered
cubic crystal equilibrated via molecular dynamics at different temperatures and
with different number of vacancies explicitly created.

System T (K) Vacancies Vacancies found Error in
positions (Å)

BCC, 5488 atoms 0 10 9.93 ± 0.70 0.185 ± 0.016

BCC, 5488 atoms 0 25 24.99 ± 0.10 0.185 ± 0.012

BCC, 5488 atoms 2000 10 7.70 ± 2.50 0.218 ± 0.036

BCC, 5488 atoms 2000 25 23.37 ± 1.18 0.212 ± 0.016

BCC, 5488 atoms 4000 10 9.84 ± 0.99 0.268 ± 0.035

BCC, 5488 atoms 4000 25 23.32 ± 0.63 0.351 ± 0.025

BCC, 5488 atoms 6000 10 7.65 ± 0.94 0.352 ± 0.046

BCC, 5488 atoms 6000 25 23.61 ± 3.68 1.829 ± 0.018

BCC, 5488 atoms 8000 10 8.47 ± 1.38 0.353 ± 0.048

BCC, 5488 atoms 8000 25 20.67 ± 2.90 1.779 ± 0.038

1108 S.M. Davis et al. / Computer Physics Communications 182 (2011) 1105–1110
Fig. 4. (Color online.) Positions of the 25 vacancies placed in the 5488 atom fcc sample at T = 4000 K (light spheres), together with the positions found by the search-and-fill
algorithm (dark spheres). The three panels are different views of the same set of coordinates, projected in the XY (upper left), YZ (upper right) and XZ (down) planes.

Fig. 5. (Color online.) Positions of the 50 vacancies placed in the 5488 atom amorphous sample (light spheres), together with the positions found by the search-and-fill
algorithm (dark spheres). The three panels are different views of the same set of coordinates, projected in the XY (upper left), YZ (upper right) and XZ (down) planes.

S.M. Davis et al. / Computer Physics Communications 182 (2011) 1105–1110 1109
Table 3
Results for 100 runs of the search-and-fill algorithm on a 5488 atom amorphous
sample with different number of vacancies introduced.

System Vacancies Vacancies found Error in positions
(Å)

Amorphous, 5488 atoms 10 9.81 ± 1.26 0.305 ± 0.030
Amorphous, 5488 atoms 25 25 ± 0.0 0.383 ± 0.033
Amorphous, 5488 atoms 50 49.74 ± 0.44 0.376 ± 0.025

Fig. 6. Time needed to complete a search for three vacancies, under different system
sizes (from 128 to 1458 atoms).

The performance of the algorithm can be fine-tuned by adjust-
ing the free parameters β and γ . The inverse “temperature” β has
an optimum value around 3 times 2 ln 2 for the samples consid-
ered (Fig. 7). Small values of β will give more freedom to explore
the solutions but, at the same time, also impair the search. Larger
values of β will improve the “descent” when closing in to a so-
lution but at the same time increase the likelihood of the search
being stuck at a local minimum. Reducing γ will always improve
the precision of the coordinates obtained, as shown in Fig. 8 but at
increasing computational cost.

The code has not been parallelized, but this and other optimiza-
tions are planned as a continuation of this work.

7. Concluding remarks

Our search-and-fill algorithm has proven useful in the task of
counting and locating individual vacancies in crystals as well as
amorphous solids. It seems to perform better when increasing the
number of vacancies (the error in the positions is smaller). The
method is, in principle, also applicable to detecting nanometer-
sized pores in amorphous materials. It is just a matter of choosing
a larger value of R0.

8. Code compilation

The code is C++ according to the ISO C++98 standard, so it
should compile without problems on every compiler supporting
C++. It has been tested with the GNU compiler version 4.1 and
4.3, as well as the Intel C++ compiler, version 10.1. The code is
self-contained, its only dependency is the math library, libm on
UNIX.

9. Example run

An example run is shown in Fig. 9. Here we consider R0 =
1.01 Å, and we fix the threshold Ω = 0.15 (i.e., γ ≈ 3, to facilitate
Fig. 7. Number of steps needed to complete the vacancy search, for different values
of the inverse “temperature” β , in units of 2 ln 2. The system was a 5488-atom bcc
crystal at T = 4000 K with 10 vacancies introduced.

Fig. 8. Error in vacancy positions (Å) for different values of the “greediness” param-
eter γ . The system was a 5488-atom bcc crystal at T = 4000 K with 10 vacancies
introduced.

the search). The configurations are from an amorphous Fe sample
(5488 atoms) from which exactly 10 atoms have been removed at
random. The procedure finds precisely those 10 atoms.

The order of command-line parameters is as follows: first,
the file containing the atomic coordinates (in XYZ format, de-
scribed below), then the simulation cell lengths Lx , L y and Lz ,
followed by the value of R0 and, optionally, the number of runs
to perform and the fixed threshold Ω . If no value of Ω is given,
a suitable default is used by taking γ = 1.2. The XYZ format
consists of a line containing the number of atoms, followed by
a title line (which in this case is ignored by the program but
must be present, even empty) and then one line for every atom,
containing the atomic symbol and then the x, y and z coordi-
nates.

Acknowledgements

Computations were performed at the National Supercomputer
Center (NSC) in Linköping and the Parallel Computer Center (PDC)
in Stockholm. We also thank the Swedish Research Council VR for
financial support.

1110 S.M. Davis et al. / Computer Physics Communications 182 (2011) 1105–1110
Fig. 9. The output from an example run of the SearchFill code. 10 atoms were initially removed, and the program find precisely those 10 atoms and their approximate
location.
References

[1] R.W. Balluffi, S.M. Allen, W.C. Carter, Kinetics of Materials, John Wiley and Sons,
2005.

[2] M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations, Cam-
bridge University Press, 1998.

[3] L. Gómez, A. Dobry, C. Geuting, H.T. Diep, L. Burakovsky, Phys. Rev. Lett. 90
(2003) 095701.

[4] G. Voronoi, J. Reine Angew. Math. 134 (1908).
[5] M. Forsblom, G. Grimvall, Nature Materials 4 (2005) 388.
[6] J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91 (1987) 4950.
[7] F. Delogu, J. Phys. Chem. B 110 (2006) 12645.
[8] A.B. Belonoshko, S. Davis, N.V. Skorodumova, P.H. Lundow, A. Rosengren, B. Jo-

hansson, Phys. Rev. B 76 (2007) 064121.
[9] E.W. Weisstein, Sphere–sphere intersection, http://mathworld.wolfram.com/

Sphere-SphereIntersection.html.
[10] M. Allen, D. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford,

1987.
[11] A.B. Belonoshko, R. Ahuja, B. Johansson, Phys. Rev. Lett. 84 (2000) 3638.

http://mathworld.wolfram.com/Sphere-SphereIntersection.html
http://mathworld.wolfram.com/Sphere-SphereIntersection.html

	SearchFill: A stochastic optimization code for detecting atomic vacancies in crystalline and non-crystalline systems
	Introduction
	Theoretical background
	Algorithm description
	Implementation details
	Results
	Efﬁciency
	Concluding remarks
	Code compilation
	Example run
	Acknowledgements
	References

