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Abstract The foundations of Statistical Mechanics can be recovered almost in their
entirety from the principle of maximum entropy. In this work we show that its
non-equilibrium generalization, the principle of maximum caliber (Jaynes, Phys Rev
106:620–630, 1957), when applied to the unknown trajectory followed by a particle,
leads to Newton’s second law under two quite intuitive assumptions (both the expected
square displacement in one step and the spatial probability distribution of the particle
are known at all times). Our derivation explicitly highlights the role of mass as an
emergent measure of the fluctuations in velocity (inertia) and the origin of potential
energy as a manifestation of spatial correlations. According to our findings, the appli-
cation of Newton’s equations is not limited to mechanical systems, and therefore could
be used in modelling ecological, financial and biological systems, among others.

Keywords Newtonian mechanics · Maximum caliber

1 Introduction

Newtonian mechanics is a cornerstone of our civilization. From its simpler formula-
tion, F = ma, to Lagrangian and Hamiltonian mechanics it has evolved an elegant
mathematical apparatus around it. However, we still have to assume the principle of
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minimum action as a postulate (that is, if we do not consider Newtonian mechanics as
a limiting consequence of quantum mechanics).

There have been attempts to derive Newtonian dynamics from different principles.
Particularly related to this work, it has been previously derived from information-
geometric arguments leading to the idea of entropic dynamics [1]. This idea is based
on the assumption of an irreducible uncertainty in the position of a particle, implying
an information metric for space from which Newton’s second law naturally emerges.
Caticha and Cafaro’s derivation is founded on Jaynes’ maximum entropy principle [2]
(MaxEnt for short), a generic rule for the construction of probabilistic models.

In 1957, Edwin T. Jaynes [2] postulated that Statistical Mechanics has to be
understood, not as a physical theory in the same footing as, say, classical mechan-
ics or electromagnetism, but as an application of statistical inference to a system with
macroscopically large numbers of degrees of freedom. The question was reversed
from “given the microscopic evolution of the system, what is the probability distribu-
tion for the macroscopic quantities?” to “given a few known macroscopic properties,
what are the possible microstates compatible with said knowledge?”. The answer, as
initially proposed by Gibbs, was the probability distribution with maximum entropy
S = −∑

i Pi ln Pi subjected to constraints reflecting the known macroscopic proper-
ties. Jaynes, after the work of Shannon in information theory, realized that this proce-
dure (maximization of S constrained only by the known information) is not limited to
Statistical Mechanics but a valid principle in any problem of statistical inference. This
is the principle of Maximum Entropy. Due to the uniqueness of Shannon’s entropy
in characterizing uncertainty, it is the most unbiased procedure for the construction
of statistical models. Later, it has been axiomatically derived [3,4] from requirements
of internal consistency, so its validity is independent of any meaning assigned to the
quantity S.

A full understanding of the maximum entropy principle requires the adoption of
the Bayesian viewpoint on probability: An “absolute” probability distribution P(x)

does not exist, only conditional probability distributions P(x |H) where H represents
a given state of knowledge. For a given H , MaxEnt gives us the most unbiased model
we can propose with our (possibly limited) information, therefore we cannot guarantee
beforehand that it is the correct model. As we acquire more and more information,
P(x |H) becomes increasingly more independent of H , and for all practical purposes
the distribution becomes objective (independent of the observer).

The principle of Maximum Caliber [5,6] generalizes this idea to dynamical sys-
tems, including time explicitly. It has been applied recently to discrete dynamics [7]
and earlier to derive the Fokker–Planck equations [8] and the Markov process formal-
ism [9].

In this work we show that if we use the maximum caliber principle to find the
unknown trajectory of a particle, there are two general conditions that automatically
lead to Newton’s second law, namely that (a) the expected square displacement per
step is known at all times, and (b) that the time-independent probability of finding
the particle at any coordinate is also known. Knowledge of both (a) and (b) leads
to Newton’s second law in expectation over trajectories, and what is perhaps more
interesting, any dynamical system not following Newton’s second law has to violate
at least one of these assumptions.
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2 The Maximum Entropy and Maximum Caliber Formalism

Consider a system with N degrees of freedom, whose states are denoted by vectors
�x = (x1, . . . , xN ). Suppose the expectation values of M functions fi (�x) are known.
This represents a Bayesian state of knowledge, that we will denote by H . Maximization
of the Shannon entropy

S = −
∫

d �x P(�x |H) ln P(�x |H) (1)

under the constraints
〈
fi (�x)

〉
H = Fi leads to the MaxEnt model

P(�x |H) = 1

Z(�λ)
exp

(

−
M∑

k=1

λk fk(�x)

)

, (2)

where the value of the Lagrange multipliers λk needed to impose the M constraints
can be determined from

− ∂

∂λk
ln Z(�λ) = Fk . (3)

Equation 3, being a nonlinear equation is usually impractical to solve. Moreover, it
needs the partition function explicitly. However, it has been recently shown [10] that
for the Lagrange multipliers the equality

〈
∇ · �v

〉
=

M∑

k=1

λk

〈
�v · ∇ fk

〉
(4)

holds, with �v an arbitrary differentiable vector field, and this provides a linear system
of equations for �λ. The most probable microstate �x0 is such that

∇ P(�x |H)|�x=�x0 = 0,

therefore the function

G(�x) =
M∑

k=1

λk fk(�x)

which is a combination of all the constraints imposed, is also an extremum at �x0.
In the case of dynamical systems, we now ask for the possible microscopical trajec-

tories compatible with some known information H (expressed as expectation values).
The result is the probability distribution of trajectories P[x(t)|H ] which maximizes
the Shannon entropy

S = −
∫

Dx(t)P[x(t)|H ] ln P[x(t)|H ] (5)
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given H . Note that S is now defined as a functional integral, as indicated by the nota-
tion Dx(t). This conveys the idea of integration over a space of trajectories x(t), as
is commonly denoted in Feynman’s path integral formulation of quantum mechan-
ics [11].

The probability distribution functional for the different possible trajectories is

P[x(t)|H ] = 1

Z [λ(t)]e− ∫
dtλ(t) f [x(t);t], (6)

where, similarly to Eq. 3, the Lagrange multiplier function can be obtained from

− δ

δλ(t)
ln Z [λ(t)] = 〈

f [x(t); t]〉. (7)

Here the most probable trajectory extremizes a particular functional (analogous to an
“action” in classical mechanics)

A[x(t)] =
∫

dtλ(t) f [x(t); t] (8)

depending on the constraining function. This leads to the question: without introduc-
ing the Lagrangian of classical mechanics explicitly, could it emerge naturally from
simpler constraints in a Maximum Caliber problem?

3 Derivation of Newton’s Second Law

Consider a single particle following an unknown trajectory x(t) in one spatial dimen-
sion. This can be easily generalized to many particles in arbitrary dimensions, at the
cost of overcomplicated notation.

If we discretize time, such that the continuous variable t is sampled at intervals �t
and becomes tk = k�t (with k = 0, . . . , n −1), the positions x(t) have to be replaced
with xk = x(tk). Now the trajectory x(t) itself becomes a vector �x = (x0, . . . , xn−1),
and the Lagrange function λ(t) also becomes a vector �λ = (λ0, . . . , λn−1). This is the
method of finite differences [12]. We can see that, using this discretized version, we
recover Eqs. 2 and 3, therefore we can also employ the identity given by Eq. 4 for this
kind of discretized Maximum Caliber problem.

We now impose the following constraints (expectations are to be interpreted over
all possible trajectories)

〈
(xi − xi−1)

2
〉
= (�t)2di

2 (9)

〈
δ(xi − X)

〉
= P(xi = X |H), (10)

for all values of i and X . The first constraint recognizes the fact that the expected
square displacement in one (possible infinitesimal) step is known for all times, and

123



Found Phys (2014) 44:923–931 927

is equal to an arbitrary function di
2 times the time step. We expressed it in this form

so that di can remain finite when taking the limit �t → 0. The second constraint
imposes that the static, time-independent probability distribution for the coordinate x
is also known.

Here we must remark that, as we are considering the Bayesian view of probability,
the last constraint can always be fulfilled: P(xi = X |H) is a model comprising
our knowledge of xi under the state H, not a physical property of the phenomenon.
Different states of information H may assign different probability distributions P(xi =
X |H), and the “quality” of this information will be reflected in the resulting potential
energy function emerging from this formalism (as will be seen later).

The probability distribution function for �x is

P(�x |H) = 1

Z(�λ)
exp

(
−

n−1∑

i=0

λi

(�t)2 (xi −xi−1)
2 −

n−1∑

i=0

∫

d Xμ(X)δ(xi − X)
)
, (11)

where λi and μ(X) are Lagrange multipliers associated to the constraints in Eqs. 9
and 10, respectively.

After integrating the Dirac delta function, Eq. 11 becomes

P(�x |H) = 1

Z(�λ)
exp

(
−

n−1∑

i=0

λi

(�t)2 (xi − xi−1)
2 −

n−1∑

i=0

μ(xi )
)
. (12)

This is the probability of the particle taking a well-defined discretized trajectory �x , and
is precisely the solution of a Maximum Entropy problem with n degrees of freedom
and n Lagrange multipliers λi (plus the function μ).

The most probable trajectory for the particle follows a minimum action principle.
Indeed, if we define mk = 2λk and �(x) = −μ(x), we recover, from Eq. 12,

P(�x |H) = 1

Z
exp

(
− A(�x)

)
(13)

where a discretized version of the classical action

A(�x) =
n−1∑

i=0

[1

2
mi ẋ2

i − �(xi )
]

(14)

appears in the exponential. Clearly, Eqs. 13 and 14 in the continuum limit become

P[x(t)|H ] = 1

Z
exp

(
− A[x(t)]

)
(15)

A[x(t)] =
∫

dtL(x(t), ẋ(t); t),
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and it follows that the most probable continuous trajectory x(t) is the one that extrem-
izes the classical action A[x(t)] with Lagrangian

L(x, ẋ; t) = 1

2
m(t)ẋ2 − �(x) (16)

and associated Hamiltonian

H(x, p; t) = p2

2m(t)
+ �(x). (17)

This is the formalism of Classical Mechanics for a particle with time-dependent
mass m(t) subjected to a potential energy �(x). Both m and � have emerged from
the Lagrange multipliers associated with the constraints on the expected square of
the step and the probability distribution of the coordinate, respectively. Thus we can
say the following: whenever the information about the expected square of the step
is important, the particle acquires mass, and whenever the information about which
regions are more probable in space becomes important, the particle is subjected to a
potential energy.

As Eq. 12 is a MaxEnt solution, Eq. 4 holds as

〈
∇ · �v(�x)

〉
=

n−1∑

i=0

λi

(�t)2

〈
�v(�x) · ∇(xi − xi−1)

2
〉
+

n−1∑

i=0

〈
�v(�x) · ∇μ(xi )

〉
, (18)

with �v an arbitrary differentiable vector field, of our choosing. If we choose �v such
that it has a single component k, i.e. vi = δi,kω(�x) with ω an arbitrary scalar field, we
obtain

〈 ∂ω

∂xk

〉
=

n−1∑

i=0

λi

(�t)2

〈
ω(�x) · 2(xi − xi−1)(δi,k − δi−1,k)

〉
+

n−1∑

i=0

〈
ω(�x) · μ′(xi )δi,k

〉

= 1

(�t)2

〈
2ω(�x)

[
λk(xk − xk−1) − λk+1(xk+1 − xk)

]〉
+

〈
ω(�x)μ′(xk)

〉
.

(19)
But recalling that the discrete forward derivative is

ȧi ≈ ai+1 − ai

�t
, (20)

we can re-write Eq. 19 as

〈 ∂ω

∂xk

〉
= −

〈
ω

(
ṗk + μ′(xk)

)〉
, (21)

where pk = mk ẋk .
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Considering ω = 1 we finally obtain

〈
ṗk

〉
= −

〈
�′(xk)

〉
. (22)

which, in the continuous limit (�t → 0), becomes

〈
ṗ(t)

〉
= −

〈
�′(x(t))

〉
, (23)

the expectation value of Newton’s second law with momentum p = mẋ and potential
energy �(x).

In appendix A we explore the validity of some aspects of the canonical formalism,
namely the Poisson bracket, for the expectation over trajectories.

4 Concluding Remarks

We have found that two simple constraints are sufficient to recover Newton’s second
law in expectation for the probable trajectories of a particle. The first constraint, on the
step size as a function of time, leads to the existence of an inertial mass m(t) propor-
tional to the Lagrange multiplier λ(t). To understand the meaning of this, remember
that for any variational problem solved using Lagrange multipliers, the larger the value
of the multiplier, the more restrictive (and therefore more relevant) the constraint. An
irrelevant constraint has always a vanishing multiplier. As Jaynes [13] (p. 945) clearly
states, “The Lagrange multipliers λk in the MAXENT formalism have therefore a
deep meaning: λk is the ’potential’ of the datum R′

k , that measures how important a
constraint it represents.”

Now we motivate the following principle: constraints related to conserved quanti-
ties are always more relevant. For instance, this explains the fact that the canonical
ensemble in equilibrium statistical mechanics is correctly derived just from a single
constraint, the energy or expectation of the Hamiltonian, which is an integral of motion.
Another illustration is the following: suppose we are trying to recover the trajectory
of a particle from information about the distance to a particular point. If this distance
is a constant, this is enough to isolate a unique trajectory, the circle. If we only know
that the distance varies between r1 and r2, the number of compatible trajectories will
increase with �r = r2 − r1, thus the strength of the constraint will correspondingly
decrease with increasing �r .

Given the earlier discussion, the closer d2
i is to be a conserved quantity, the more

relevant the first constraint is. In this case, λ(t) is large and therefore, m(t) is also
large. Conversely, if the value of m is small, this means λ(t) is small and therefore
d2

i has larger fluctuations. In the continuous limit it is the instantaneous speed that
fluctuates (there is a non-zero acceleration). This embodies the idea of inertia, and is
reminiscent of the ideas of Smolin [14] and of Nelson [15] about inertia being inversely
proportional to the size of quantum fluctuations.
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Appendix 1: Canonical Coordinates and Poisson Brackets

An interesting question is how much of the formalism of classical mechanics we
can recover from Eq. 22. The fact that most of the structure of classical mechanics is
contained in the definition and properties of the Poisson bracket, motivates us to search
for an operation analogous to this bracket under the Maximum Caliber formalism.

For arbitrary differentiable functions f (x, p) and g(x, p) the Poisson bracket is
defined as

{ f, g} = ∂ f

∂x

∂g

∂p
− ∂ f

∂p

∂g

∂x
, (24)

and it is such that
d f

dt
− ∂ f

∂t
= { f,H} (25)

holds. Let us compute the expectation of the left hand side,

〈d f

dt

〉
−

〈∂ f

∂t

〉
=

〈 ∂ f

∂xk
ẋk + ∂ f

∂pk
ṗk

〉
, (26)

which using Eq. 21 with ω = ∂ f/∂pk can be written as

〈d f

dt

〉
−

〈∂ f

∂t

〉
=

〈 ∂ f

∂xk
ẋk − ∂

∂xk

( ∂ f

∂pk

)
− ∂ f

∂pk
�′(xk)

〉
(27)

Now using our classical Hamiltonian (Eq. 17) we recognize its derivatives

ẋk = ∂H
∂pk

(28)

�′(xk) = ∂H
∂xk

(29)

and, upon replacing, we have

〈d f

dt

〉
−

〈∂ f

∂t

〉
=

〈 ∂ f

∂xk

∂H
∂pk

− ∂

∂xk

( ∂ f

∂pk

)
− ∂ f

∂pk

∂H
∂xk

〉
(30)

leading finally to
〈d f

dt

〉
−

〈∂ f

∂t

〉
=

〈
{ f,H}

〉
−

〈 ∂

∂xk

( ∂ f

∂pk

)〉
. (31)

So, in expectation we find a Poisson bracket analog with an additional term. For
the particular case f = H, we obtain

〈dH
dt

〉
= −

〈 ∂

∂xk

( ∂H
∂pk

)〉
, (32)
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which reduces to

s
〈dH

dt

〉
= −

〈∂ ẋk

∂xk

〉
= 0, (33)

using the centered difference,

ȧi ≈ ai+1 − ai−1

2�t
. (34)

Therefore we have shown that, for a Hamiltonian with the form given in Eq. 17,
the energy is conserved in expectation. Note that using one-sided differences is not
appropriate here, as one obtains ±1/�t depending on forward or backward.
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